Q. Huang, E. M. Sankara Narayanan, K. Kwan, G. Amaratunga, W. Milne
{"title":"一种新型重掺杂漂移辅助阴极侧绝缘栅晶体管结构","authors":"Q. Huang, E. M. Sankara Narayanan, K. Kwan, G. Amaratunga, W. Milne","doi":"10.1109/ISPSD.1990.991068","DOIUrl":null,"url":null,"abstract":"A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.","PeriodicalId":162198,"journal":{"name":"Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD '90.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel heavily doped drift - auxiliary cathode lateral insulated gate transistor structure\",\"authors\":\"Q. Huang, E. M. Sankara Narayanan, K. Kwan, G. Amaratunga, W. Milne\",\"doi\":\"10.1109/ISPSD.1990.991068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.\",\"PeriodicalId\":162198,\"journal\":{\"name\":\"Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD '90.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD '90.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD.1990.991068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Symposium on Power Semiconductor Devices and Ics. ISPSD '90.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD.1990.991068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel CMOS-compatible, heavily doped drift auxiliary cathode lateral insulated gate transistor (HDD-ACLIGT) structure is analyzed using two-dimensional device simulation techniques. Simulation results indicate that low on-resistance and a fast turn-off time of less than 50 ns can be achieved by incorporating an additional n+ region which is self-aligned to the gate between the p+ auxiliary cathode and the p well, together with an extended p buried layer in an anode-shorted modified lateral insulated gate transistor (MLIGT) structure. The on-state and its transient performance are analyzed in detail. The on-state performances of the HDD-ACLIGT and the MLIGT are compared and discussed. The results indicate that the HDD-ACLIGT structure is well suited for HVICs. The device is also well suited for integration with self-aligned digital CMOS.