D. Feiler, S. Radovanovic, P. Dighe, Arul Kitnan, G. Simpson, Gad Schwager, Alexander Eynis, D. Enidjer
{"title":"一种经过验证的方法,用于检测光刻胶残留,并通过使用SP2裸晶圆检查和SURFmonitor测量荧光来确定光刻胶材料","authors":"D. Feiler, S. Radovanovic, P. Dighe, Arul Kitnan, G. Simpson, Gad Schwager, Alexander Eynis, D. Enidjer","doi":"10.1117/12.837020","DOIUrl":null,"url":null,"abstract":"During the chip making process, complete removal of photo-resist is very critical. Current metrology & analytical methods do not provide enough sensitivity to detect residual amounts of photo-resist remaining on the wafer. Using the novel method described in this study, the Surfscan SP2 and SURFmonitor solution has successfully demonstrated the sensitivity needed to detect residual photo-resist. This method takes advantage of the fact that residual photo-resist, which is organic in nature, will fluoresce. By scanning wafers after the ash and clean step using the SP2 (UV wavelength) unpatterned defect inspection tool equipped with SURFmonitor, it is possible to generate a full-wafer fluorescence SURFimage. This SURFimage was shown to clearly indicate the regions of the wafer where residual photoresist was present.","PeriodicalId":383504,"journal":{"name":"Lithography Asia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A proven methodology for detecting photo-resist residue and for qualifying photo-resist material by measuring fluorescence using SP2 bare wafer inspection and SURFmonitor\",\"authors\":\"D. Feiler, S. Radovanovic, P. Dighe, Arul Kitnan, G. Simpson, Gad Schwager, Alexander Eynis, D. Enidjer\",\"doi\":\"10.1117/12.837020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the chip making process, complete removal of photo-resist is very critical. Current metrology & analytical methods do not provide enough sensitivity to detect residual amounts of photo-resist remaining on the wafer. Using the novel method described in this study, the Surfscan SP2 and SURFmonitor solution has successfully demonstrated the sensitivity needed to detect residual photo-resist. This method takes advantage of the fact that residual photo-resist, which is organic in nature, will fluoresce. By scanning wafers after the ash and clean step using the SP2 (UV wavelength) unpatterned defect inspection tool equipped with SURFmonitor, it is possible to generate a full-wafer fluorescence SURFimage. This SURFimage was shown to clearly indicate the regions of the wafer where residual photoresist was present.\",\"PeriodicalId\":383504,\"journal\":{\"name\":\"Lithography Asia\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithography Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.837020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithography Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.837020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A proven methodology for detecting photo-resist residue and for qualifying photo-resist material by measuring fluorescence using SP2 bare wafer inspection and SURFmonitor
During the chip making process, complete removal of photo-resist is very critical. Current metrology & analytical methods do not provide enough sensitivity to detect residual amounts of photo-resist remaining on the wafer. Using the novel method described in this study, the Surfscan SP2 and SURFmonitor solution has successfully demonstrated the sensitivity needed to detect residual photo-resist. This method takes advantage of the fact that residual photo-resist, which is organic in nature, will fluoresce. By scanning wafers after the ash and clean step using the SP2 (UV wavelength) unpatterned defect inspection tool equipped with SURFmonitor, it is possible to generate a full-wafer fluorescence SURFimage. This SURFimage was shown to clearly indicate the regions of the wafer where residual photoresist was present.