具有有限不确定性的可视化数据

Christopher Olston, J. Mackinlay
{"title":"具有有限不确定性的可视化数据","authors":"Christopher Olston, J. Mackinlay","doi":"10.1109/INFVIS.2002.1173145","DOIUrl":null,"url":null,"abstract":"Visualization is a powerful way to facilitate data analysis, but it is crucial that visualization systems explicitly convey the presence, nature, and degree of uncertainty to users. Otherwise, there is a danger that data will be falsely interpreted, potentially leading to inaccurate conclusions. A common method for denoting uncertainty is to use error bars or similar techniques designed to convey the degree of statistical uncertainty. While uncertainty can often be modeled statistically, a second form of uncertainty, bounded uncertainty, can also arise that has very different properties than statistical uncertainty. Error bars should not be used for bounded uncertainty because they do not convey the correct properties, so a different technique should be used instead. We describe a technique for conveying bounded uncertainty in visualizations and show how it can be applied systematically to common displays of abstract charts and graphs. Interestingly, it is not always possible to show the exact degree of uncertainty, and in some cases it can only be displayed approximately.","PeriodicalId":293232,"journal":{"name":"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"88","resultStr":"{\"title\":\"Visualizing data with bounded uncertainty\",\"authors\":\"Christopher Olston, J. Mackinlay\",\"doi\":\"10.1109/INFVIS.2002.1173145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visualization is a powerful way to facilitate data analysis, but it is crucial that visualization systems explicitly convey the presence, nature, and degree of uncertainty to users. Otherwise, there is a danger that data will be falsely interpreted, potentially leading to inaccurate conclusions. A common method for denoting uncertainty is to use error bars or similar techniques designed to convey the degree of statistical uncertainty. While uncertainty can often be modeled statistically, a second form of uncertainty, bounded uncertainty, can also arise that has very different properties than statistical uncertainty. Error bars should not be used for bounded uncertainty because they do not convey the correct properties, so a different technique should be used instead. We describe a technique for conveying bounded uncertainty in visualizations and show how it can be applied systematically to common displays of abstract charts and graphs. Interestingly, it is not always possible to show the exact degree of uncertainty, and in some cases it can only be displayed approximately.\",\"PeriodicalId\":293232,\"journal\":{\"name\":\"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"88\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFVIS.2002.1173145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Symposium on Information Visualization, 2002. INFOVIS 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFVIS.2002.1173145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88

摘要

可视化是促进数据分析的一种强大方法,但是可视化系统明确地向用户传达不确定性的存在、性质和程度是至关重要的。否则,就有可能错误地解释数据,从而可能导致不准确的结论。表示不确定性的一种常用方法是使用误差条或类似的技术来传达统计不确定性的程度。虽然不确定性通常可以用统计方法建模,但也可能出现第二种形式的不确定性,即有界不确定性,它具有与统计不确定性非常不同的性质。错误条不应该用于有界不确定性,因为它们不能传达正确的属性,因此应该使用不同的技术。我们描述了一种在可视化中传达有限不确定性的技术,并展示了如何将其系统地应用于抽象图表和图形的常见显示。有趣的是,我们并不总是能够精确地显示不确定性的程度,在某些情况下,我们只能近似地显示不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visualizing data with bounded uncertainty
Visualization is a powerful way to facilitate data analysis, but it is crucial that visualization systems explicitly convey the presence, nature, and degree of uncertainty to users. Otherwise, there is a danger that data will be falsely interpreted, potentially leading to inaccurate conclusions. A common method for denoting uncertainty is to use error bars or similar techniques designed to convey the degree of statistical uncertainty. While uncertainty can often be modeled statistically, a second form of uncertainty, bounded uncertainty, can also arise that has very different properties than statistical uncertainty. Error bars should not be used for bounded uncertainty because they do not convey the correct properties, so a different technique should be used instead. We describe a technique for conveying bounded uncertainty in visualizations and show how it can be applied systematically to common displays of abstract charts and graphs. Interestingly, it is not always possible to show the exact degree of uncertainty, and in some cases it can only be displayed approximately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信