加法器输入分布和最大进位长度传播的近似和实证研究

Oscar N. Garcia, H. Glass, Stanley C. Haimes
{"title":"加法器输入分布和最大进位长度传播的近似和实证研究","authors":"Oscar N. Garcia, H. Glass, Stanley C. Haimes","doi":"10.1109/ARITH.1978.6155778","DOIUrl":null,"url":null,"abstract":"This paper investigates, using sampled data, the commonly used hypothesis that integer operands reaching the adder of a computer are uniformly distributed. Questions raised on the validity of that hypothesis are reinforced and their impact on the calculation of the average of the worst case length of carry propagation is considered. An approximate formula is developed for the worst case carry chain length when the arithmetic operands are restricted in magnitude.","PeriodicalId":443215,"journal":{"name":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1978-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An approximate and empirical study of the distribution of adder inputs and maximum carry length propagation\",\"authors\":\"Oscar N. Garcia, H. Glass, Stanley C. Haimes\",\"doi\":\"10.1109/ARITH.1978.6155778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates, using sampled data, the commonly used hypothesis that integer operands reaching the adder of a computer are uniformly distributed. Questions raised on the validity of that hypothesis are reinforced and their impact on the calculation of the average of the worst case length of carry propagation is considered. An approximate formula is developed for the worst case carry chain length when the arithmetic operands are restricted in magnitude.\",\"PeriodicalId\":443215,\"journal\":{\"name\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1978-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1978.6155778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE 4th Symposium onomputer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1978.6155778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文利用抽样数据研究了到达计算机加法器的整数操作数均匀分布的常用假设。加强了对该假设的有效性提出的问题,并考虑了它们对最坏情况下carry传播长度平均值计算的影响。在算术操作数大小受限的情况下,导出了最坏情况下进位链长度的近似公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximate and empirical study of the distribution of adder inputs and maximum carry length propagation
This paper investigates, using sampled data, the commonly used hypothesis that integer operands reaching the adder of a computer are uniformly distributed. Questions raised on the validity of that hypothesis are reinforced and their impact on the calculation of the average of the worst case length of carry propagation is considered. An approximate formula is developed for the worst case carry chain length when the arithmetic operands are restricted in magnitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信