NERO掌握了30万个CNN细胞

R. Braunschweig, Jens Müller, Jan Müller, R. Tetzlaff
{"title":"NERO掌握了30万个CNN细胞","authors":"R. Braunschweig, Jens Müller, Jan Müller, R. Tetzlaff","doi":"10.1109/ECCTD.2013.6662202","DOIUrl":null,"url":null,"abstract":"A novel massively-parallel fine-grain architecture featuring a digital emulation of Cellular Nonlinear Networks (CNN) is presented. A virtual cellular network is processed line-by-line by a locally connected linear array of processing elements. The resulting computing system is able to execute complex CNN program code consisting of consecutive operations. Furthermore we present a scalable FPGA implementation of this architecture for currently up to 480 × 640 cells with a precision up to 18 bit.","PeriodicalId":342333,"journal":{"name":"2013 European Conference on Circuit Theory and Design (ECCTD)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"NERO mastering 300k CNN cells\",\"authors\":\"R. Braunschweig, Jens Müller, Jan Müller, R. Tetzlaff\",\"doi\":\"10.1109/ECCTD.2013.6662202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel massively-parallel fine-grain architecture featuring a digital emulation of Cellular Nonlinear Networks (CNN) is presented. A virtual cellular network is processed line-by-line by a locally connected linear array of processing elements. The resulting computing system is able to execute complex CNN program code consisting of consecutive operations. Furthermore we present a scalable FPGA implementation of this architecture for currently up to 480 × 640 cells with a precision up to 18 bit.\",\"PeriodicalId\":342333,\"journal\":{\"name\":\"2013 European Conference on Circuit Theory and Design (ECCTD)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 European Conference on Circuit Theory and Design (ECCTD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECCTD.2013.6662202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 European Conference on Circuit Theory and Design (ECCTD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCTD.2013.6662202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种具有数字仿真细胞非线性网络(CNN)的新型大规模并行细粒度架构。虚拟蜂窝网络由本地连接的处理单元线性阵列逐行处理。由此产生的计算系统能够执行由连续操作组成的复杂CNN程序代码。此外,我们提出了一种可扩展的FPGA实现该架构,目前可用于高达480 × 640个单元,精度高达18位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NERO mastering 300k CNN cells
A novel massively-parallel fine-grain architecture featuring a digital emulation of Cellular Nonlinear Networks (CNN) is presented. A virtual cellular network is processed line-by-line by a locally connected linear array of processing elements. The resulting computing system is able to execute complex CNN program code consisting of consecutive operations. Furthermore we present a scalable FPGA implementation of this architecture for currently up to 480 × 640 cells with a precision up to 18 bit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信