用三维张量结构元素过滤稀疏数据

M. Vieira, M. Cord, Paulo P. Martins, A. Araújo, S. Philipp-Foliguet
{"title":"用三维张量结构元素过滤稀疏数据","authors":"M. Vieira, M. Cord, Paulo P. Martins, A. Araújo, S. Philipp-Foliguet","doi":"10.1109/SIBGRA.2002.1167132","DOIUrl":null,"url":null,"abstract":"We address the problem of filtering three-dimensional sparse data representing real objects. The main application is to eliminate points that are not structured on surfaces. Points classified as organized can be the input for other processes. An accumulation process infers the organization of each input element. The tensorial fields used in our method act as three-dimensional structuring elements. They define normal orientations in space indicating possible surface continuations.","PeriodicalId":286814,"journal":{"name":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Filtering sparse data with 3D tensorial structuring elements\",\"authors\":\"M. Vieira, M. Cord, Paulo P. Martins, A. Araújo, S. Philipp-Foliguet\",\"doi\":\"10.1109/SIBGRA.2002.1167132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of filtering three-dimensional sparse data representing real objects. The main application is to eliminate points that are not structured on surfaces. Points classified as organized can be the input for other processes. An accumulation process infers the organization of each input element. The tensorial fields used in our method act as three-dimensional structuring elements. They define normal orientations in space indicating possible surface continuations.\",\"PeriodicalId\":286814,\"journal\":{\"name\":\"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRA.2002.1167132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. XV Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.2002.1167132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了代表真实物体的三维稀疏数据的过滤问题。主要的应用是消除表面上没有结构的点。分类为有组织的点可以作为其他过程的输入。积累过程推断出每个输入元素的组织。在我们的方法中使用的张量场作为三维结构单元。它们在空间中定义法线方向,表示可能的表面延续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtering sparse data with 3D tensorial structuring elements
We address the problem of filtering three-dimensional sparse data representing real objects. The main application is to eliminate points that are not structured on surfaces. Points classified as organized can be the input for other processes. An accumulation process infers the organization of each input element. The tensorial fields used in our method act as three-dimensional structuring elements. They define normal orientations in space indicating possible surface continuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信