{"title":"通用测试集检测可逆电路缺门故障的研究","authors":"H. Rahaman, D. Kole, D. K. Das, B. Bhattacharya","doi":"10.1109/VLSI.2008.106","DOIUrl":null,"url":null,"abstract":"Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n times n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit.","PeriodicalId":143886,"journal":{"name":"21st International Conference on VLSI Design (VLSID 2008)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set\",\"authors\":\"H. Rahaman, D. Kole, D. K. Das, B. Bhattacharya\",\"doi\":\"10.1109/VLSI.2008.106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n times n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit.\",\"PeriodicalId\":143886,\"journal\":{\"name\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st International Conference on VLSI Design (VLSID 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI.2008.106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st International Conference on VLSI Design (VLSID 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI.2008.106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Detection of Missing-Gate Faults in Reversible Circuits by a Universal Test Set
Logic synthesis with reversible circuits has received considerable interest in the light of advances recently made in quantum computation. Implementation of a reversible circuit is envisaged by deploying several special types of quantum gates, such as k-CNOT. Newer technologies like ion trapping or nuclear magnetic resonance are required to emulate quantum gates. Although the classical stuck-at fault model is widely used for testing conventional CMOS circuits, new fault models, namely, single missing-gate fault (SMGF), repeated-gate fault (RGF), partial missing-gate fault (PMGF), and multiple missing-gate fault (MMGF), have been found to be more suitable for modeling defects in quantum k-CNOT gates. In this paper, it is shown that in an (n times n) reversible circuit implemented with k-CNOT gates, addition of only one extra control line along with duplication each k-CNOT gate yields an easily testable design, which admits a universal test set of size (n +1) that detects all SMGFs, RGFs, and PMGFs in the circuit.