高速加工的加工参数选择

We-Feng Kuo, Ching-Hung Lee
{"title":"高速加工的加工参数选择","authors":"We-Feng Kuo, Ching-Hung Lee","doi":"10.1109/ICESI.2019.8862997","DOIUrl":null,"url":null,"abstract":"In this study, we introduce the “CNC Assistant” for machining parameters selection for high speed requirement in accuracy and surface roughness constraints. It involves modeling for experimental data of accuracy, surface roughness and machining time on a five-axis CNC machine tool (HM3025L) published by CHMER, coupled with a controller (M6HN) which is launched by GENTEC, based on processing parameters (feed rate, acceleration after interpolation time constant, acceleration and S-curve time constant). In order to predict and optimize the processing parameters combination, we use the data-driven approach to establish the back-propagation neural network (BPNN), and apply the particle swarm optimization (PSO) algorithm to search the processing parameters based on the constraints of accuracy and surface roughness. That is, users can set the specified conditions of accuracy and surface roughness, then the CNC assistant has the ability to obtain the corresponding machining parameters, not only leading to the shortest machining time but also meeting the design conditions. As above, the CNC assistant provide the machinery industry become more intelligent and convenient to improve the efficiency of CNC machine tools.","PeriodicalId":249316,"journal":{"name":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Machining Parameters Selection for High Speed Processing\",\"authors\":\"We-Feng Kuo, Ching-Hung Lee\",\"doi\":\"10.1109/ICESI.2019.8862997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce the “CNC Assistant” for machining parameters selection for high speed requirement in accuracy and surface roughness constraints. It involves modeling for experimental data of accuracy, surface roughness and machining time on a five-axis CNC machine tool (HM3025L) published by CHMER, coupled with a controller (M6HN) which is launched by GENTEC, based on processing parameters (feed rate, acceleration after interpolation time constant, acceleration and S-curve time constant). In order to predict and optimize the processing parameters combination, we use the data-driven approach to establish the back-propagation neural network (BPNN), and apply the particle swarm optimization (PSO) algorithm to search the processing parameters based on the constraints of accuracy and surface roughness. That is, users can set the specified conditions of accuracy and surface roughness, then the CNC assistant has the ability to obtain the corresponding machining parameters, not only leading to the shortest machining time but also meeting the design conditions. As above, the CNC assistant provide the machinery industry become more intelligent and convenient to improve the efficiency of CNC machine tools.\",\"PeriodicalId\":249316,\"journal\":{\"name\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESI.2019.8862997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESI.2019.8862997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,我们介绍了“CNC助手”的加工参数选择在精度和表面粗糙度约束的高速要求。基于加工参数(进给速度、插补后加速度时间常数、加速度和s曲线时间常数),结合GENTEC公司推出的控制器(M6HN),对CHMER公司发布的五轴数控机床(HM3025L)的精度、表面粗糙度和加工时间实验数据进行建模。为了预测和优化加工参数组合,采用数据驱动的方法建立了反向传播神经网络(BPNN),并基于精度和表面粗糙度约束,采用粒子群优化(PSO)算法对加工参数进行搜索。即用户可以设定精度和表面粗糙度的规定条件,然后CNC助手有能力获得相应的加工参数,不仅导致加工时间最短,而且满足设计条件。综上所述,数控助手的出现使机械行业变得更加智能化和便捷化,提高了数控机床的工作效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machining Parameters Selection for High Speed Processing
In this study, we introduce the “CNC Assistant” for machining parameters selection for high speed requirement in accuracy and surface roughness constraints. It involves modeling for experimental data of accuracy, surface roughness and machining time on a five-axis CNC machine tool (HM3025L) published by CHMER, coupled with a controller (M6HN) which is launched by GENTEC, based on processing parameters (feed rate, acceleration after interpolation time constant, acceleration and S-curve time constant). In order to predict and optimize the processing parameters combination, we use the data-driven approach to establish the back-propagation neural network (BPNN), and apply the particle swarm optimization (PSO) algorithm to search the processing parameters based on the constraints of accuracy and surface roughness. That is, users can set the specified conditions of accuracy and surface roughness, then the CNC assistant has the ability to obtain the corresponding machining parameters, not only leading to the shortest machining time but also meeting the design conditions. As above, the CNC assistant provide the machinery industry become more intelligent and convenient to improve the efficiency of CNC machine tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信