{"title":"大尺度动态河网模拟","authors":"Frank Liu, B. Hodges","doi":"10.1145/2228360.2228491","DOIUrl":null,"url":null,"abstract":"Fully dynamic modeling of large scale river networks is still a challenge. In this paper we describe SPRINT, an interdisciplinary collaborative effort between computer engineering and hydroscience to address the computational aspect of this challenge. Although algorithmic details differ, SPRINT draws many design considerations from SPICE, one of the most fundamental EDA tools. Experimental results demonstrate that SPRINT is capable of simulating large river basins at over 100× faster than real time.","PeriodicalId":263599,"journal":{"name":"DAC Design Automation Conference 2012","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Dynamic river network simulation at large scale\",\"authors\":\"Frank Liu, B. Hodges\",\"doi\":\"10.1145/2228360.2228491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fully dynamic modeling of large scale river networks is still a challenge. In this paper we describe SPRINT, an interdisciplinary collaborative effort between computer engineering and hydroscience to address the computational aspect of this challenge. Although algorithmic details differ, SPRINT draws many design considerations from SPICE, one of the most fundamental EDA tools. Experimental results demonstrate that SPRINT is capable of simulating large river basins at over 100× faster than real time.\",\"PeriodicalId\":263599,\"journal\":{\"name\":\"DAC Design Automation Conference 2012\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DAC Design Automation Conference 2012\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2228360.2228491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DAC Design Automation Conference 2012","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2228360.2228491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fully dynamic modeling of large scale river networks is still a challenge. In this paper we describe SPRINT, an interdisciplinary collaborative effort between computer engineering and hydroscience to address the computational aspect of this challenge. Although algorithmic details differ, SPRINT draws many design considerations from SPICE, one of the most fundamental EDA tools. Experimental results demonstrate that SPRINT is capable of simulating large river basins at over 100× faster than real time.