Stefan Ruzika, A. Tanatmis, F. Kienle, H. Hamacher, N. Wehn, Mayur Punekar
{"title":"二元线性码的有效不等式","authors":"Stefan Ruzika, A. Tanatmis, F. Kienle, H. Hamacher, N. Wehn, Mayur Punekar","doi":"10.1109/ISIT.2009.5205846","DOIUrl":null,"url":null,"abstract":"We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.","PeriodicalId":412925,"journal":{"name":"2009 IEEE International Symposium on Information Theory","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Valid inequalities for binary linear codes\",\"authors\":\"Stefan Ruzika, A. Tanatmis, F. Kienle, H. Hamacher, N. Wehn, Mayur Punekar\",\"doi\":\"10.1109/ISIT.2009.5205846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.\",\"PeriodicalId\":412925,\"journal\":{\"name\":\"2009 IEEE International Symposium on Information Theory\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2009.5205846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2009.5205846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study an integer programming (IP) based separation approach to find the maximum likelihood (ML) codeword for binary linear codes. An algorithm introduced in Tanatmis et al. is extended and improved with respect to decoding performance without increasing the worst case complexity. This is demonstrated on the LDPC and the BCH code classes. Moreover, we propose an integer programming formulation to calculate the minimum distance of a binary linear code. We exemplarily compute the minimum distance of the (204, 102) LDPC code and the (576, 288) WIMAX code. Using the minimum distance of a code, a new class of valid inequalities is introduced.