{"title":"VLSI物理设计中IP标记的安全防漏公开验证","authors":"Debasri Saha, S. Sur-Kolay","doi":"10.1109/ISVLSI.2009.35","DOIUrl":null,"url":null,"abstract":"Reuse of Intellectual Property (IP) of VLSI physical design facilitates integration of more components on a single chip in shrinking time-to-market. For intellectual property protection (IPP), various kinds of IP marks are embedded into the design for establishing the veracity of a legal owner. However, public verification of IP marks is not leakage-proof. Current techniques include a sufficiently large set of public marks containing a header and a message body in addition to private ones to facilitate only public verification at the cost of significant increase in design overhead. But these techniques are not effective, as attackers manage to obtain potential clues to tamper public marks rendering public verification invalid and may also suitably override the marks to include own signature resulting in wrong public identification of IP owner. Here we propose a zero-knowledge protocol to ensure robust and absolutely leakage proof convincing public verification with the help of private marks. We have tested our protocol for FPGA benchmarks. The results on overhead and robustness are encouraging.","PeriodicalId":137508,"journal":{"name":"2009 IEEE Computer Society Annual Symposium on VLSI","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Secure Leakage-Proof Public Verification of IP Marks in VLSI Physical Design\",\"authors\":\"Debasri Saha, S. Sur-Kolay\",\"doi\":\"10.1109/ISVLSI.2009.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reuse of Intellectual Property (IP) of VLSI physical design facilitates integration of more components on a single chip in shrinking time-to-market. For intellectual property protection (IPP), various kinds of IP marks are embedded into the design for establishing the veracity of a legal owner. However, public verification of IP marks is not leakage-proof. Current techniques include a sufficiently large set of public marks containing a header and a message body in addition to private ones to facilitate only public verification at the cost of significant increase in design overhead. But these techniques are not effective, as attackers manage to obtain potential clues to tamper public marks rendering public verification invalid and may also suitably override the marks to include own signature resulting in wrong public identification of IP owner. Here we propose a zero-knowledge protocol to ensure robust and absolutely leakage proof convincing public verification with the help of private marks. We have tested our protocol for FPGA benchmarks. The results on overhead and robustness are encouraging.\",\"PeriodicalId\":137508,\"journal\":{\"name\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Annual Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISVLSI.2009.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Annual Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2009.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Secure Leakage-Proof Public Verification of IP Marks in VLSI Physical Design
Reuse of Intellectual Property (IP) of VLSI physical design facilitates integration of more components on a single chip in shrinking time-to-market. For intellectual property protection (IPP), various kinds of IP marks are embedded into the design for establishing the veracity of a legal owner. However, public verification of IP marks is not leakage-proof. Current techniques include a sufficiently large set of public marks containing a header and a message body in addition to private ones to facilitate only public verification at the cost of significant increase in design overhead. But these techniques are not effective, as attackers manage to obtain potential clues to tamper public marks rendering public verification invalid and may also suitably override the marks to include own signature resulting in wrong public identification of IP owner. Here we propose a zero-knowledge protocol to ensure robust and absolutely leakage proof convincing public verification with the help of private marks. We have tested our protocol for FPGA benchmarks. The results on overhead and robustness are encouraging.