{"title":"基于多臂强盗学习的TDMA传输时隙调度和碎片整理,以提高带宽利用率","authors":"H. Dutta, Amit Kumar Bhuyan, S. Biswas","doi":"10.1109/ICOIN56518.2023.10048935","DOIUrl":null,"url":null,"abstract":"This paper proposes a Time Division Multiple Access (TDMA) MAC slot allocation protocol with efficient bandwidth usage in wireless sensor networks and Internet of Things (IoTs). The developed protocol has two primary components: a Multi-Armed Bandits (MAB)-based slot allocation mechanism for collision free transmission, and a Decentralized Defragmented Slot Backshift (DDSB) operation for improving bandwidth usage efficiency. The proposed framework is decentralized in that each node finds its transmission schedule independently without the control of any centralized arbitrator. The developed mechanism is suitable for networks with or without time synchronization, thus, making it suitable for low-complexity wireless transceivers for wireless sensor and IoT nodes. This framework is able to manage the trade-off between learning convergence time and bandwidth. In addition, it allows the nodes to adapt to topological changes while maintaining efficient bandwidth usage. The developed logic is tested for both fully-connected and arbitrary mesh networks with extensive simulation experiments. It is shown how the nodes can learn to select collision-free transmission slots using MAB. Moreover, the nodes learn to self-adjust their transmission schedules using a novel DDSB framework in order to reduce bandwidth usage.","PeriodicalId":285763,"journal":{"name":"2023 International Conference on Information Networking (ICOIN)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-armed Bandit Learning for TDMA Transmission Slot Scheduling and Defragmentation for Improved Bandwidth Usage\",\"authors\":\"H. Dutta, Amit Kumar Bhuyan, S. Biswas\",\"doi\":\"10.1109/ICOIN56518.2023.10048935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a Time Division Multiple Access (TDMA) MAC slot allocation protocol with efficient bandwidth usage in wireless sensor networks and Internet of Things (IoTs). The developed protocol has two primary components: a Multi-Armed Bandits (MAB)-based slot allocation mechanism for collision free transmission, and a Decentralized Defragmented Slot Backshift (DDSB) operation for improving bandwidth usage efficiency. The proposed framework is decentralized in that each node finds its transmission schedule independently without the control of any centralized arbitrator. The developed mechanism is suitable for networks with or without time synchronization, thus, making it suitable for low-complexity wireless transceivers for wireless sensor and IoT nodes. This framework is able to manage the trade-off between learning convergence time and bandwidth. In addition, it allows the nodes to adapt to topological changes while maintaining efficient bandwidth usage. The developed logic is tested for both fully-connected and arbitrary mesh networks with extensive simulation experiments. It is shown how the nodes can learn to select collision-free transmission slots using MAB. Moreover, the nodes learn to self-adjust their transmission schedules using a novel DDSB framework in order to reduce bandwidth usage.\",\"PeriodicalId\":285763,\"journal\":{\"name\":\"2023 International Conference on Information Networking (ICOIN)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Information Networking (ICOIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN56518.2023.10048935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Information Networking (ICOIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN56518.2023.10048935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-armed Bandit Learning for TDMA Transmission Slot Scheduling and Defragmentation for Improved Bandwidth Usage
This paper proposes a Time Division Multiple Access (TDMA) MAC slot allocation protocol with efficient bandwidth usage in wireless sensor networks and Internet of Things (IoTs). The developed protocol has two primary components: a Multi-Armed Bandits (MAB)-based slot allocation mechanism for collision free transmission, and a Decentralized Defragmented Slot Backshift (DDSB) operation for improving bandwidth usage efficiency. The proposed framework is decentralized in that each node finds its transmission schedule independently without the control of any centralized arbitrator. The developed mechanism is suitable for networks with or without time synchronization, thus, making it suitable for low-complexity wireless transceivers for wireless sensor and IoT nodes. This framework is able to manage the trade-off between learning convergence time and bandwidth. In addition, it allows the nodes to adapt to topological changes while maintaining efficient bandwidth usage. The developed logic is tested for both fully-connected and arbitrary mesh networks with extensive simulation experiments. It is shown how the nodes can learn to select collision-free transmission slots using MAB. Moreover, the nodes learn to self-adjust their transmission schedules using a novel DDSB framework in order to reduce bandwidth usage.