Davino Mauro Junior, L. Melo, Hao Lu, Marcelo d’Amorim, A. Prakash
{"title":"基于智能设备配套应用的智能设备漏洞分析研究","authors":"Davino Mauro Junior, L. Melo, Hao Lu, Marcelo d’Amorim, A. Prakash","doi":"10.1109/SPW.2019.00042","DOIUrl":null,"url":null,"abstract":"Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications.","PeriodicalId":125351,"journal":{"name":"2019 IEEE Security and Privacy Workshops (SPW)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Study of Vulnerability Analysis of Popular Smart Devices Through Their Companion Apps\",\"authors\":\"Davino Mauro Junior, L. Melo, Hao Lu, Marcelo d’Amorim, A. Prakash\",\"doi\":\"10.1109/SPW.2019.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications.\",\"PeriodicalId\":125351,\"journal\":{\"name\":\"2019 IEEE Security and Privacy Workshops (SPW)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Security and Privacy Workshops (SPW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2019.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Security and Privacy Workshops (SPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2019.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study of Vulnerability Analysis of Popular Smart Devices Through Their Companion Apps
Security of Internet of Things (IoT) devices is a well-known concern as these devices come in increasing use in homes and commercial environments. To better understand the extent to which companies take security of the IoT devices seriously and the methods they use to secure them, this paper presents findings from a security analysis of 96 top-selling WiFi IoT devices on Amazon. We found that we could carry out a significant portion of the analysis by first analyzing the code of Android companion apps responsible for controlling the devices. An interesting finding was that these devices used only 32 unique companion apps; we found instances of devices from same as well as different brands sharing the same app, significantly reducing our work. We analyzed the code of these companion apps to understand how they communicated with the devices and the security of that communication. We found security problems to be widespread: 50% of the apps corresponding to 38% of the devices did not use proper encryption techniques; some even used well-known weak ciphers such as Caesar cipher. We also purchased 5 devices and confirmed the vulnerabilities found with exploits. In some cases, we were able to bypass the pairing process and still control the device. Finally, we comment on technical and non-technical lessons learned from the study that have security implications.