声学振动采集压电微功率采集器的设计与仿真

Mohd H. S. Alrashdan, B. Majlis, A. A. Hamzah, Noraini Marsi
{"title":"声学振动采集压电微功率采集器的设计与仿真","authors":"Mohd H. S. Alrashdan, B. Majlis, A. A. Hamzah, Noraini Marsi","doi":"10.1109/RSM.2013.6706556","DOIUrl":null,"url":null,"abstract":"Piezoelectric Micro-Power Harvester (PMPH), harvests mechanical vibration sources available in the environment and converts it to usable electric power via piezoelectric effects. The low power requirements and small device dimensions enable PMPH to supply enough power necessary to a variety of applications such as wireless sensor nodes, wrist watches and cell phone signals, thus proving to be an excellent alternative source for traditional lithium iodide battery especially in body sensor nodes. In this paper we design PMPH that is able to harvest environmental vibration sounds and convert it to usable electrical power for artificial cochlea. Spring mass damper system with single degree of freedom is used to model PMPH. COMSOL Multiphysics 4.2 is used to simulate PMPH. a linear relationship between voltage and external load for piezoelectric materials during Static analysis is observed, Eigenfrequency is used to find the resonance frequencies for six modes of operation and its deflection shape, PMPH harvest the maximum acoustic vibration at first mode of operation at 589 Hz. Simulation results using Transient analysis show that PMPH total displacement about 6 μm and output voltage at center of piezoelectric material about 4*10-15Vp-p at steady state and can harvest acoustic vibration at 598Hz and convert it to electric power about 23nW, which is sufficient for cochlear implant application.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Design and simulation of piezoelectric micro power harvester for capturing acoustic vibrations\",\"authors\":\"Mohd H. S. Alrashdan, B. Majlis, A. A. Hamzah, Noraini Marsi\",\"doi\":\"10.1109/RSM.2013.6706556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric Micro-Power Harvester (PMPH), harvests mechanical vibration sources available in the environment and converts it to usable electric power via piezoelectric effects. The low power requirements and small device dimensions enable PMPH to supply enough power necessary to a variety of applications such as wireless sensor nodes, wrist watches and cell phone signals, thus proving to be an excellent alternative source for traditional lithium iodide battery especially in body sensor nodes. In this paper we design PMPH that is able to harvest environmental vibration sounds and convert it to usable electrical power for artificial cochlea. Spring mass damper system with single degree of freedom is used to model PMPH. COMSOL Multiphysics 4.2 is used to simulate PMPH. a linear relationship between voltage and external load for piezoelectric materials during Static analysis is observed, Eigenfrequency is used to find the resonance frequencies for six modes of operation and its deflection shape, PMPH harvest the maximum acoustic vibration at first mode of operation at 589 Hz. Simulation results using Transient analysis show that PMPH total displacement about 6 μm and output voltage at center of piezoelectric material about 4*10-15Vp-p at steady state and can harvest acoustic vibration at 598Hz and convert it to electric power about 23nW, which is sufficient for cochlear implant application.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

压电微动力收割机(PMPH)收集环境中可用的机械振动源,并通过压电效应将其转换为可用的电能。低功耗要求和小设备尺寸使PMPH能够为各种应用(如无线传感器节点,腕表和手机信号)提供足够的电力,从而证明是传统碘化锂电池的绝佳替代来源,特别是在身体传感器节点中。本文设计了一种能够收集环境振动声音并将其转化为人工耳蜗可用电能的PMPH。采用单自由度弹簧质量阻尼系统对PMPH进行建模。采用COMSOL Multiphysics 4.2进行PMPH仿真。在静力分析过程中,观察到压电材料的电压与外载荷之间存在线性关系,利用特征频率求出六种工作模式下的谐振频率及其挠度形状,PMPH获取第一种工作模式下589 Hz的最大声振动。瞬态仿真结果表明,稳态时压电材料的总位移约为6 μm,压电材料中心输出电压约为4 × 10-15Vp-p,可采集598Hz的声振动并将其转化为约23nW的电能,足以满足人工耳蜗的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and simulation of piezoelectric micro power harvester for capturing acoustic vibrations
Piezoelectric Micro-Power Harvester (PMPH), harvests mechanical vibration sources available in the environment and converts it to usable electric power via piezoelectric effects. The low power requirements and small device dimensions enable PMPH to supply enough power necessary to a variety of applications such as wireless sensor nodes, wrist watches and cell phone signals, thus proving to be an excellent alternative source for traditional lithium iodide battery especially in body sensor nodes. In this paper we design PMPH that is able to harvest environmental vibration sounds and convert it to usable electrical power for artificial cochlea. Spring mass damper system with single degree of freedom is used to model PMPH. COMSOL Multiphysics 4.2 is used to simulate PMPH. a linear relationship between voltage and external load for piezoelectric materials during Static analysis is observed, Eigenfrequency is used to find the resonance frequencies for six modes of operation and its deflection shape, PMPH harvest the maximum acoustic vibration at first mode of operation at 589 Hz. Simulation results using Transient analysis show that PMPH total displacement about 6 μm and output voltage at center of piezoelectric material about 4*10-15Vp-p at steady state and can harvest acoustic vibration at 598Hz and convert it to electric power about 23nW, which is sufficient for cochlear implant application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信