基于模型的催眠调节内模控制的设计与研究

S. Abdulla, P. Wen, W. Xiang
{"title":"基于模型的催眠调节内模控制的设计与研究","authors":"S. Abdulla, P. Wen, W. Xiang","doi":"10.1109/NANOMED.2010.5749833","DOIUrl":null,"url":null,"abstract":"The manual control of anaesthesia is still the dominant practice during surgery. An increasing number of studies have been conducted to explore the possibility of automating this process. The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the differences in pharmacokinetics (PK), and pharmacodynamics (PD). This study develops patient dose-response models and provides an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated and compared with traditional PID controller. The performance is confirmed in our simulation.","PeriodicalId":446237,"journal":{"name":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"The design and investigation of model based internal model control for the regulation of hypnosis\",\"authors\":\"S. Abdulla, P. Wen, W. Xiang\",\"doi\":\"10.1109/NANOMED.2010.5749833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The manual control of anaesthesia is still the dominant practice during surgery. An increasing number of studies have been conducted to explore the possibility of automating this process. The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the differences in pharmacokinetics (PK), and pharmacodynamics (PD). This study develops patient dose-response models and provides an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated and compared with traditional PID controller. The performance is confirmed in our simulation.\",\"PeriodicalId\":446237,\"journal\":{\"name\":\"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOMED.2010.5749833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Nano/Molecular Medicine and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOMED.2010.5749833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在手术中,人工控制麻醉仍然是主要的做法。已经进行了越来越多的研究来探索这一过程自动化的可能性。在麻醉过程中设计闭环控制的主要困难是由于人口统计学和药物耐受性的差异所固有的患者可变性。这些差异转化为药代动力学(PK)和药效学(PD)的差异。本研究建立了患者剂量-反应模型,并提供了适当的麻醉给药方案,以避免患者剂量不足或过量。该控制器旨在补偿患者固有的药物反应变异性,以实现最佳的输出干扰抑制,并保持最佳的设定点响应。并与传统的PID控制器进行了比较。仿真结果证实了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The design and investigation of model based internal model control for the regulation of hypnosis
The manual control of anaesthesia is still the dominant practice during surgery. An increasing number of studies have been conducted to explore the possibility of automating this process. The major difficulty in the design of closed-loop control during anaesthesia is the inherent patient variability due to differences in demographic and drug tolerance. These discrepancies are translated into the differences in pharmacokinetics (PK), and pharmacodynamics (PD). This study develops patient dose-response models and provides an adequate drug administration regimen for the anaesthesia to avoid under or over dosing of the patients. The controllers are designed to compensate for patients inherent drug response variability, to achieve the best output disturbance rejection, and to maintain optimal set point response. The results are evaluated and compared with traditional PID controller. The performance is confirmed in our simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信