基于saak变换的图像降噪方法

Q. N. Tran, Shih-Hsuan Yang
{"title":"基于saak变换的图像降噪方法","authors":"Q. N. Tran, Shih-Hsuan Yang","doi":"10.1109/ICESI.2019.8862995","DOIUrl":null,"url":null,"abstract":"This research proposes a novel approach to reduce noise in an image. In this study, the input image is considered being shot with high ISO in the low light condition and the noise is modeled as the additive white Gaussian noise. The Subspace Approximation with Augmented Kernels (Saak) transform, a state-of-the-art spatial-spectral representation, is used for extracting the local characteristics of an image. The clean coefficients are estimated based on optimal linear minimum mean square error (LMMSE) estimation with a shrinkage on Saak coefficients. The processed image provides subjectively satisfactory quality improvement and an increase in peak signal to noise ratio (PSNR) without harming edges or other image details. It shows that Saak transform is a promising tool for noise reduction.","PeriodicalId":249316,"journal":{"name":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saak-Transform based Method for Image Noise Reduction\",\"authors\":\"Q. N. Tran, Shih-Hsuan Yang\",\"doi\":\"10.1109/ICESI.2019.8862995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a novel approach to reduce noise in an image. In this study, the input image is considered being shot with high ISO in the low light condition and the noise is modeled as the additive white Gaussian noise. The Subspace Approximation with Augmented Kernels (Saak) transform, a state-of-the-art spatial-spectral representation, is used for extracting the local characteristics of an image. The clean coefficients are estimated based on optimal linear minimum mean square error (LMMSE) estimation with a shrinkage on Saak coefficients. The processed image provides subjectively satisfactory quality improvement and an increase in peak signal to noise ratio (PSNR) without harming edges or other image details. It shows that Saak transform is a promising tool for noise reduction.\",\"PeriodicalId\":249316,\"journal\":{\"name\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICESI.2019.8862995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering, Science, and Industrial Applications (ICESI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESI.2019.8862995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种降低图像噪声的新方法。在本研究中,输入图像被认为是在低光条件下以高ISO拍摄的,噪声被建模为加性高斯白噪声。增强核子空间近似(Saak)变换是一种最先进的空间-光谱表示,用于提取图像的局部特征。清洁系数的估计是基于最优线性最小均方误差(LMMSE)估计,并对Saak系数进行收缩。处理后的图像提供了主观上满意的质量改进和峰值信噪比(PSNR)的增加,而不损害边缘或其他图像细节。结果表明,Saak变换是一种很有前途的降噪工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saak-Transform based Method for Image Noise Reduction
This research proposes a novel approach to reduce noise in an image. In this study, the input image is considered being shot with high ISO in the low light condition and the noise is modeled as the additive white Gaussian noise. The Subspace Approximation with Augmented Kernels (Saak) transform, a state-of-the-art spatial-spectral representation, is used for extracting the local characteristics of an image. The clean coefficients are estimated based on optimal linear minimum mean square error (LMMSE) estimation with a shrinkage on Saak coefficients. The processed image provides subjectively satisfactory quality improvement and an increase in peak signal to noise ratio (PSNR) without harming edges or other image details. It shows that Saak transform is a promising tool for noise reduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信