利用共克里格、广义回归神经网络、多层感知器和混合技术预测诺亚布尔斯克亚北极地区的铬分布

A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева
{"title":"利用共克里格、广义回归神经网络、多层感知器和混合技术预测诺亚布尔斯克亚北极地区的铬分布","authors":"A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева","doi":"10.31857/S0869-78092019277-86","DOIUrl":null,"url":null,"abstract":"Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.","PeriodicalId":309934,"journal":{"name":"Геоэкология. Инженерная геология. Гидрогеология. Геокриология","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the chrome distribution in subarctic Noyabrsk using co-kriging, generalized regression neural network, multilayer perceptron, and hybrid technics\",\"authors\":\"A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева\",\"doi\":\"10.31857/S0869-78092019277-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.\",\"PeriodicalId\":309934,\"journal\":{\"name\":\"Геоэкология. Инженерная геология. Гидрогеология. Геокриология\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Геоэкология. Инженерная геология. Гидрогеология. Геокриология\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0869-78092019277-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Геоэкология. Инженерная геология. Гидрогеология. Геокриология","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0869-78092019277-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地质统计插值(kriging)和机器学习(人工神经网络,ANN)方法的结合提高了预测的准确性。本文考虑应用人工神经网络残差克里格法预测表层土壤铬的空间污染。本文综述并比较了广义回归神经网络(GRNN)和多层感知器(MLP)两种神经网络,以及多层感知器残差克里金(MLPRK)两种神经网络的组合方法。这项研究是基于对俄罗斯亚北极地区诺雅布尔斯克表层土壤的筛选结果。这些模型是在计算机建模的基础上建立的,力求使均方根误差最小化。MLPRK模型预测准确率最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of the chrome distribution in subarctic Noyabrsk using co-kriging, generalized regression neural network, multilayer perceptron, and hybrid technics
Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信