A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева
{"title":"利用共克里格、广义回归神经网络、多层感知器和混合技术预测诺亚布尔斯克亚北极地区的铬分布","authors":"A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева","doi":"10.31857/S0869-78092019277-86","DOIUrl":null,"url":null,"abstract":"Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.","PeriodicalId":309934,"journal":{"name":"Геоэкология. Инженерная геология. Гидрогеология. Геокриология","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of the chrome distribution in subarctic Noyabrsk using co-kriging, generalized regression neural network, multilayer perceptron, and hybrid technics\",\"authors\":\"A. Buevich, А Г Буевич, I. Subbotina, И Е Субботина, A. Shichkin, А. В. Шичкин, A. Sergeev, А П Сергеев, E. Baglaeva, Е М Баглаева\",\"doi\":\"10.31857/S0869-78092019277-86\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.\",\"PeriodicalId\":309934,\"journal\":{\"name\":\"Геоэкология. Инженерная геология. Гидрогеология. Геокриология\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Геоэкология. Инженерная геология. Гидрогеология. Геокриология\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31857/S0869-78092019277-86\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Геоэкология. Инженерная геология. Гидрогеология. Геокриология","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31857/S0869-78092019277-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of the chrome distribution in subarctic Noyabrsk using co-kriging, generalized regression neural network, multilayer perceptron, and hybrid technics
Combination of geostatistical interpolation (kriging) and machine learning (artificial neural networks, ANN) methods leads to an increase in the accuracy of forecasting. The paper considers the application of residual kriging of an artificial neural network to predicting the spatial contamination of the surface soil layer with chromium (Cr). We reviewed and compared two neural networks: the generalized regression neural network (GRNN) and multilayer perceptron (MLP), as well as the combined method: multilayer perceptron residual kriging (MLPRK). The study is based on the results of the screening of the surface soil layer in the subarctic Noyabrsk, Russia. The models are developed based on computer modeling with minimization of the RMSE. The MLPRK model showed the best prognostic accuracy.