C. Prakash, Sunpreet Singh, A. M. Abdul-Rani, M. Uddin, B. S. Pabla, S. Puri
{"title":"骨固定装置用Mg-Zn-Mn-Si-HA合金的火花等离子烧结","authors":"C. Prakash, Sunpreet Singh, A. M. Abdul-Rani, M. Uddin, B. S. Pabla, S. Puri","doi":"10.4018/978-1-5225-5445-5.CH015","DOIUrl":null,"url":null,"abstract":"In this chapter, low elastic modulus porous Mg-Zn-Mn-(Si, HA) alloy was fabricated by mechanical alloying and spark plasma sintering technique. The microstructure, topography, elemental, and chemical composition of the as-sintered bio-composite were characterized by optical microscope, FE-SEM, EDS, and XRD technique. The mechanical properties such as hardness and elastic modulus were determined by nanoindentation technique. The as-sintered bio-composites show low ductility due to the presence of Si, Ca, and Zn elements. The presence of Mg matrix was observed as primary grain and the presence of coarse Mg2Si, Zn, and CaMg as a secondary grain boundary. EDS spectrum and XRD pattern confirms the formation of intermetallic biocompatible phases in the sintered compact, which is beneficial to form apatite and improved the bioactivity of the alloy for osseointegration. The lowest elastic modulus of 28 GPa was measured. Moreover, the as-sintered bio-composites has high corrosion resistance and corrosion rate of the Mg was decreased by the addition of HA and Si element.","PeriodicalId":374453,"journal":{"name":"Handbook of Research on Green Engineering Techniques for Modern Manufacturing","volume":"32 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spark Plasma Sintering of Mg-Zn-Mn-Si-HA Alloy for Bone Fixation Devices\",\"authors\":\"C. Prakash, Sunpreet Singh, A. M. Abdul-Rani, M. Uddin, B. S. Pabla, S. Puri\",\"doi\":\"10.4018/978-1-5225-5445-5.CH015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, low elastic modulus porous Mg-Zn-Mn-(Si, HA) alloy was fabricated by mechanical alloying and spark plasma sintering technique. The microstructure, topography, elemental, and chemical composition of the as-sintered bio-composite were characterized by optical microscope, FE-SEM, EDS, and XRD technique. The mechanical properties such as hardness and elastic modulus were determined by nanoindentation technique. The as-sintered bio-composites show low ductility due to the presence of Si, Ca, and Zn elements. The presence of Mg matrix was observed as primary grain and the presence of coarse Mg2Si, Zn, and CaMg as a secondary grain boundary. EDS spectrum and XRD pattern confirms the formation of intermetallic biocompatible phases in the sintered compact, which is beneficial to form apatite and improved the bioactivity of the alloy for osseointegration. The lowest elastic modulus of 28 GPa was measured. Moreover, the as-sintered bio-composites has high corrosion resistance and corrosion rate of the Mg was decreased by the addition of HA and Si element.\",\"PeriodicalId\":374453,\"journal\":{\"name\":\"Handbook of Research on Green Engineering Techniques for Modern Manufacturing\",\"volume\":\"32 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Research on Green Engineering Techniques for Modern Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-5445-5.CH015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Research on Green Engineering Techniques for Modern Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-5445-5.CH015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spark Plasma Sintering of Mg-Zn-Mn-Si-HA Alloy for Bone Fixation Devices
In this chapter, low elastic modulus porous Mg-Zn-Mn-(Si, HA) alloy was fabricated by mechanical alloying and spark plasma sintering technique. The microstructure, topography, elemental, and chemical composition of the as-sintered bio-composite were characterized by optical microscope, FE-SEM, EDS, and XRD technique. The mechanical properties such as hardness and elastic modulus were determined by nanoindentation technique. The as-sintered bio-composites show low ductility due to the presence of Si, Ca, and Zn elements. The presence of Mg matrix was observed as primary grain and the presence of coarse Mg2Si, Zn, and CaMg as a secondary grain boundary. EDS spectrum and XRD pattern confirms the formation of intermetallic biocompatible phases in the sintered compact, which is beneficial to form apatite and improved the bioactivity of the alloy for osseointegration. The lowest elastic modulus of 28 GPa was measured. Moreover, the as-sintered bio-composites has high corrosion resistance and corrosion rate of the Mg was decreased by the addition of HA and Si element.