基于模式的决策树构建

D. Gay, Nazha Selmaoui-Folcher, Jean-François Boulicaut
{"title":"基于模式的决策树构建","authors":"D. Gay, Nazha Selmaoui-Folcher, Jean-François Boulicaut","doi":"10.1109/ICDIM.2007.4444238","DOIUrl":null,"url":null,"abstract":"Learning classifiers has been studied extensively the last two decades. Recently, various approaches based on patterns (e.g.. association rules) that hold within labeled data have been considered. In this paper, we propose a novel associative classification algorithm that combines rules and a decision tree structure. In a so-called delta-PDT (delta-pattern decision tree), nodes are made of selected disjunctive delta- strong classification rules. Such rules are generated from collections of delta-free patterns that can be computed efficiently. These rules have a minimal body, they are non- redundant and they avoid classification conflicts under a sensible condition on delta. We show that they also capture the discriminative power of emerging patterns. Our approach is empirically evaluated by means of a comparison to state-of-the-art proposals (i.e., C4.5, CBA CPAR, SJEPs- classifier).","PeriodicalId":198626,"journal":{"name":"2007 2nd International Conference on Digital Information Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Pattern-based decision tree construction\",\"authors\":\"D. Gay, Nazha Selmaoui-Folcher, Jean-François Boulicaut\",\"doi\":\"10.1109/ICDIM.2007.4444238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning classifiers has been studied extensively the last two decades. Recently, various approaches based on patterns (e.g.. association rules) that hold within labeled data have been considered. In this paper, we propose a novel associative classification algorithm that combines rules and a decision tree structure. In a so-called delta-PDT (delta-pattern decision tree), nodes are made of selected disjunctive delta- strong classification rules. Such rules are generated from collections of delta-free patterns that can be computed efficiently. These rules have a minimal body, they are non- redundant and they avoid classification conflicts under a sensible condition on delta. We show that they also capture the discriminative power of emerging patterns. Our approach is empirically evaluated by means of a comparison to state-of-the-art proposals (i.e., C4.5, CBA CPAR, SJEPs- classifier).\",\"PeriodicalId\":198626,\"journal\":{\"name\":\"2007 2nd International Conference on Digital Information Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 2nd International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2007.4444238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2007.4444238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

学习分类器在过去的二十年里得到了广泛的研究。最近,基于模式的各种方法(例如…已经考虑了保存在标记数据中的关联规则。本文提出了一种结合规则和决策树结构的关联分类算法。在所谓的delta- pdt (delta模式决策树)中,节点由选择的析取delta-强分类规则组成。这些规则是从可以有效计算的无增量模式集合生成的。这些规则具有最小主体、非冗余性和在合理条件下避免分类冲突的特点。我们表明,它们也捕捉到了新兴模式的辨别能力。我们的方法是通过比较最先进的建议(即,C4.5, CBA CPAR, SJEPs-分类器)进行经验评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pattern-based decision tree construction
Learning classifiers has been studied extensively the last two decades. Recently, various approaches based on patterns (e.g.. association rules) that hold within labeled data have been considered. In this paper, we propose a novel associative classification algorithm that combines rules and a decision tree structure. In a so-called delta-PDT (delta-pattern decision tree), nodes are made of selected disjunctive delta- strong classification rules. Such rules are generated from collections of delta-free patterns that can be computed efficiently. These rules have a minimal body, they are non- redundant and they avoid classification conflicts under a sensible condition on delta. We show that they also capture the discriminative power of emerging patterns. Our approach is empirically evaluated by means of a comparison to state-of-the-art proposals (i.e., C4.5, CBA CPAR, SJEPs- classifier).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信