低功耗除法:基数4,8和16的实现比较

A. Nannarelli, T. Lang
{"title":"低功耗除法:基数4,8和16的实现比较","authors":"A. Nannarelli, T. Lang","doi":"10.1109/ARITH.1999.762829","DOIUrl":null,"url":null,"abstract":"Although division is less frequent than addition and multiplication, because of its longer latency it dissipates a substantial part of the energy in floating-point units. In this paper we explore the relation between the radix and the energy dissipated. Previous work has been done an radix-4 and radix-8 division. Here we extend this study to a radix-4 scheme with two overlapped radix-4 stages and compare the latency, area, and energy of the three implementations. Results show that by applying the low-power techniques the energy dissipation is reduced from 30% to 40%, with respect to the standard implementation. An additional 20% reduction can be obtained using a dual voltage. Moreover the energy dissipated to complete the division is roughly the same for the three radices. However, the power dissipation, proportional to the average current, increases with the radix. If reducing the energy is the priority, for the same latency radix-16 with dual voltage produces the smallest energy dissipation.","PeriodicalId":434169,"journal":{"name":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Low-power division: comparison among implementations of radix 4, 8 and 16\",\"authors\":\"A. Nannarelli, T. Lang\",\"doi\":\"10.1109/ARITH.1999.762829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although division is less frequent than addition and multiplication, because of its longer latency it dissipates a substantial part of the energy in floating-point units. In this paper we explore the relation between the radix and the energy dissipated. Previous work has been done an radix-4 and radix-8 division. Here we extend this study to a radix-4 scheme with two overlapped radix-4 stages and compare the latency, area, and energy of the three implementations. Results show that by applying the low-power techniques the energy dissipation is reduced from 30% to 40%, with respect to the standard implementation. An additional 20% reduction can be obtained using a dual voltage. Moreover the energy dissipated to complete the division is roughly the same for the three radices. However, the power dissipation, proportional to the average current, increases with the radix. If reducing the energy is the priority, for the same latency radix-16 with dual voltage produces the smallest energy dissipation.\",\"PeriodicalId\":434169,\"journal\":{\"name\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1999.762829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 14th IEEE Symposium on Computer Arithmetic (Cat. No.99CB36336)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1999.762829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

尽管除法比加法和乘法的频率要低,但由于它的延迟更长,它在浮点单位中消耗了相当大一部分能量。在本文中,我们探讨了基数与能量耗散之间的关系。之前的工作已经完成了基数4和基数8的除法。在这里,我们将研究扩展到具有两个重叠的基数-4阶段的基数-4方案,并比较了三种实现的延迟,面积和能量。结果表明,与标准实施相比,采用低功耗技术可将能耗从30%降低到40%。使用双电压可以获得另外20%的减少。此外,完成分割所消耗的能量对于三个根来说大致相同。然而,功耗与平均电流成正比,随着基数的增加而增加。如果降低能量是优先考虑的,对于相同的延迟基数-16,双电压产生最小的能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-power division: comparison among implementations of radix 4, 8 and 16
Although division is less frequent than addition and multiplication, because of its longer latency it dissipates a substantial part of the energy in floating-point units. In this paper we explore the relation between the radix and the energy dissipated. Previous work has been done an radix-4 and radix-8 division. Here we extend this study to a radix-4 scheme with two overlapped radix-4 stages and compare the latency, area, and energy of the three implementations. Results show that by applying the low-power techniques the energy dissipation is reduced from 30% to 40%, with respect to the standard implementation. An additional 20% reduction can be obtained using a dual voltage. Moreover the energy dissipated to complete the division is roughly the same for the three radices. However, the power dissipation, proportional to the average current, increases with the radix. If reducing the energy is the priority, for the same latency radix-16 with dual voltage produces the smallest energy dissipation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信