LSTM、GRU和混合架构在推荐系统中深度学习应用的比较

Mario Lendro Pires Toledo, Marcelo Novaes de Rezende
{"title":"LSTM、GRU和混合架构在推荐系统中深度学习应用的比较","authors":"Mario Lendro Pires Toledo, Marcelo Novaes de Rezende","doi":"10.1145/3441417.3441422","DOIUrl":null,"url":null,"abstract":"This article shows the results of a performance analysis from LSTM, GRU and Hybrid Neural Network architectures in Recommendation Systems. To this end, prototypes of the networks were built to be trained using data from the user's browsing history of a streaming website in China. The results were evaluated using the metrics of Accuracy, Precision, Recall and F1-Score, thus identifying the advantages and disadvantages of each architecture in different approaches.","PeriodicalId":398727,"journal":{"name":"International Conference on Advances in Artificial Intelligence","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of LSTM, GRU and Hybrid Architectures for usage of Deep Learning on Recommendation Systems\",\"authors\":\"Mario Lendro Pires Toledo, Marcelo Novaes de Rezende\",\"doi\":\"10.1145/3441417.3441422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article shows the results of a performance analysis from LSTM, GRU and Hybrid Neural Network architectures in Recommendation Systems. To this end, prototypes of the networks were built to be trained using data from the user's browsing history of a streaming website in China. The results were evaluated using the metrics of Accuracy, Precision, Recall and F1-Score, thus identifying the advantages and disadvantages of each architecture in different approaches.\",\"PeriodicalId\":398727,\"journal\":{\"name\":\"International Conference on Advances in Artificial Intelligence\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advances in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3441417.3441422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advances in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3441417.3441422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparison of LSTM, GRU and Hybrid Architectures for usage of Deep Learning on Recommendation Systems
This article shows the results of a performance analysis from LSTM, GRU and Hybrid Neural Network architectures in Recommendation Systems. To this end, prototypes of the networks were built to be trained using data from the user's browsing history of a streaming website in China. The results were evaluated using the metrics of Accuracy, Precision, Recall and F1-Score, thus identifying the advantages and disadvantages of each architecture in different approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信