Esteban Garzón, R. Taco, L. Prócel, L. Trojman, M. Lanuzza
{"title":"节能嵌入式存储器中基于dmtj的stt - mram的电压和技术缩放","authors":"Esteban Garzón, R. Taco, L. Prócel, L. Trojman, M. Lanuzza","doi":"10.1109/LASCAS53948.2022.9789054","DOIUrl":null,"url":null,"abstract":"This work presents energy advantages allowed by the technology and voltage scaling of spin-transfer torque mag-netic random access memories (STT-MRAMs) based on perpen-dicular double-barrier magnetic tunnel junction (DMTJ), with two reference layers. DMTJ is benchmarked against the single-barrier MTJ (SMTJ) -based alternative, and a comprehensive evaluation is carried out through a cross-layer simulation frame-work, considering state-of-the-art Verilog-A based SMTJ and DMTJ compact models, along with a 0.8V FinFET technology. Simulation results show that, thanks to the lower voltage op-erating point, DMTJ-based STT-MRAM allows energy savings for write/read operations of about 38%/45%, as compared to its SMTJ-based counterpart. Moreover, scaling from the 28 nm down to the 20 nm node, the DMTJ-based memory cell improves write/read energy of about 29%/33% at the expense of longer access times.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Voltage and Technology Scaling of DMTJ-based STT-MRAMs for Energy-Efficient Embedded Memories\",\"authors\":\"Esteban Garzón, R. Taco, L. Prócel, L. Trojman, M. Lanuzza\",\"doi\":\"10.1109/LASCAS53948.2022.9789054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents energy advantages allowed by the technology and voltage scaling of spin-transfer torque mag-netic random access memories (STT-MRAMs) based on perpen-dicular double-barrier magnetic tunnel junction (DMTJ), with two reference layers. DMTJ is benchmarked against the single-barrier MTJ (SMTJ) -based alternative, and a comprehensive evaluation is carried out through a cross-layer simulation frame-work, considering state-of-the-art Verilog-A based SMTJ and DMTJ compact models, along with a 0.8V FinFET technology. Simulation results show that, thanks to the lower voltage op-erating point, DMTJ-based STT-MRAM allows energy savings for write/read operations of about 38%/45%, as compared to its SMTJ-based counterpart. Moreover, scaling from the 28 nm down to the 20 nm node, the DMTJ-based memory cell improves write/read energy of about 29%/33% at the expense of longer access times.\",\"PeriodicalId\":356481,\"journal\":{\"name\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS53948.2022.9789054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9789054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Voltage and Technology Scaling of DMTJ-based STT-MRAMs for Energy-Efficient Embedded Memories
This work presents energy advantages allowed by the technology and voltage scaling of spin-transfer torque mag-netic random access memories (STT-MRAMs) based on perpen-dicular double-barrier magnetic tunnel junction (DMTJ), with two reference layers. DMTJ is benchmarked against the single-barrier MTJ (SMTJ) -based alternative, and a comprehensive evaluation is carried out through a cross-layer simulation frame-work, considering state-of-the-art Verilog-A based SMTJ and DMTJ compact models, along with a 0.8V FinFET technology. Simulation results show that, thanks to the lower voltage op-erating point, DMTJ-based STT-MRAM allows energy savings for write/read operations of about 38%/45%, as compared to its SMTJ-based counterpart. Moreover, scaling from the 28 nm down to the 20 nm node, the DMTJ-based memory cell improves write/read energy of about 29%/33% at the expense of longer access times.