{"title":"一种快速的过程变化和模式保真度感知掩模优化算法","authors":"Ahmed Awad, A. Takahashi, S. Tanaka, C. Kodama","doi":"10.1109/ICCAD.2014.7001358","DOIUrl":null,"url":null,"abstract":"With the continuous shrinking of minimum feature sizes beyond current 193nm wavelength for optical micro lithography, the electronic industry relies on Resolution Enhancement Techniques (RETs) to improve pattern transfer fidelity. However, the lithographic process is susceptible to dose and focus variations that will eventually cause lithographic yield degradation. In this paper, a new algorithm is proposed to minimize the Edge Placement Error (EPE) and the process variability of the printed image. The algorithm is also adapted to reduce the computational time using a novel approach through minimizing the number of convolutions during lithography simulation time. Experimental results show that the proposed algorithm results in less average cost than the top three teams of ICCAD 2013 contest on the public benchmarks.","PeriodicalId":426584,"journal":{"name":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"A fast process variation and pattern fidelity aware mask optimization algorithm\",\"authors\":\"Ahmed Awad, A. Takahashi, S. Tanaka, C. Kodama\",\"doi\":\"10.1109/ICCAD.2014.7001358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the continuous shrinking of minimum feature sizes beyond current 193nm wavelength for optical micro lithography, the electronic industry relies on Resolution Enhancement Techniques (RETs) to improve pattern transfer fidelity. However, the lithographic process is susceptible to dose and focus variations that will eventually cause lithographic yield degradation. In this paper, a new algorithm is proposed to minimize the Edge Placement Error (EPE) and the process variability of the printed image. The algorithm is also adapted to reduce the computational time using a novel approach through minimizing the number of convolutions during lithography simulation time. Experimental results show that the proposed algorithm results in less average cost than the top three teams of ICCAD 2013 contest on the public benchmarks.\",\"PeriodicalId\":426584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2014.7001358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2014.7001358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast process variation and pattern fidelity aware mask optimization algorithm
With the continuous shrinking of minimum feature sizes beyond current 193nm wavelength for optical micro lithography, the electronic industry relies on Resolution Enhancement Techniques (RETs) to improve pattern transfer fidelity. However, the lithographic process is susceptible to dose and focus variations that will eventually cause lithographic yield degradation. In this paper, a new algorithm is proposed to minimize the Edge Placement Error (EPE) and the process variability of the printed image. The algorithm is also adapted to reduce the computational time using a novel approach through minimizing the number of convolutions during lithography simulation time. Experimental results show that the proposed algorithm results in less average cost than the top three teams of ICCAD 2013 contest on the public benchmarks.