Anupam Datta, Ante Derek, John C. Mitchell, Dusko Pavlovic
{"title":"安全协议的派生系统及其逻辑形式化","authors":"Anupam Datta, Ante Derek, John C. Mitchell, Dusko Pavlovic","doi":"10.1109/CSFW.2003.1212708","DOIUrl":null,"url":null,"abstract":"Many authentication and key exchange protocols are built using an accepted set of standard concepts such as Diffie-Hellman key exchange, nonces to avoid replay, certificates from an accepted authority, and encrypted or signed messages. We introduce a basic framework for deriving security protocols from such simple components. As a case study, we examine the structure of a family of key exchange protocols that includes station-to-station (STS), ISO-9798-3, just fast keying (JFK), IKE and related protocols, deriving all members of the family from two basic protocols using a small set of refinements and protocol transformations. As initial steps toward associating logical derivations with protocol derivations, we extend a previous security protocol logic with preconditions and temporal assertions. Using this logic, we prove the security properties of the standard signature based challenge-response protocol and the Diffie-Hellman key exchange protocol. The ISO-9798-3 protocol is then proved correct by composing the correctness proofs of these two simple protocols.","PeriodicalId":283743,"journal":{"name":"16th IEEE Computer Security Foundations Workshop, 2003. Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"A derivation system for security protocols and its logical formalization\",\"authors\":\"Anupam Datta, Ante Derek, John C. Mitchell, Dusko Pavlovic\",\"doi\":\"10.1109/CSFW.2003.1212708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many authentication and key exchange protocols are built using an accepted set of standard concepts such as Diffie-Hellman key exchange, nonces to avoid replay, certificates from an accepted authority, and encrypted or signed messages. We introduce a basic framework for deriving security protocols from such simple components. As a case study, we examine the structure of a family of key exchange protocols that includes station-to-station (STS), ISO-9798-3, just fast keying (JFK), IKE and related protocols, deriving all members of the family from two basic protocols using a small set of refinements and protocol transformations. As initial steps toward associating logical derivations with protocol derivations, we extend a previous security protocol logic with preconditions and temporal assertions. Using this logic, we prove the security properties of the standard signature based challenge-response protocol and the Diffie-Hellman key exchange protocol. The ISO-9798-3 protocol is then proved correct by composing the correctness proofs of these two simple protocols.\",\"PeriodicalId\":283743,\"journal\":{\"name\":\"16th IEEE Computer Security Foundations Workshop, 2003. Proceedings.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th IEEE Computer Security Foundations Workshop, 2003. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSFW.2003.1212708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE Computer Security Foundations Workshop, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSFW.2003.1212708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A derivation system for security protocols and its logical formalization
Many authentication and key exchange protocols are built using an accepted set of standard concepts such as Diffie-Hellman key exchange, nonces to avoid replay, certificates from an accepted authority, and encrypted or signed messages. We introduce a basic framework for deriving security protocols from such simple components. As a case study, we examine the structure of a family of key exchange protocols that includes station-to-station (STS), ISO-9798-3, just fast keying (JFK), IKE and related protocols, deriving all members of the family from two basic protocols using a small set of refinements and protocol transformations. As initial steps toward associating logical derivations with protocol derivations, we extend a previous security protocol logic with preconditions and temporal assertions. Using this logic, we prove the security properties of the standard signature based challenge-response protocol and the Diffie-Hellman key exchange protocol. The ISO-9798-3 protocol is then proved correct by composing the correctness proofs of these two simple protocols.