中国上空气溶胶光学深度融合的半经验光学数据融合技术

Hui Xu, Yong Xue, J. Guang, Yingjie Li, Leiku Yang, Tingting Hou, Xingwei He, Jing Dong, Ziqiang Chen
{"title":"中国上空气溶胶光学深度融合的半经验光学数据融合技术","authors":"Hui Xu, Yong Xue, J. Guang, Yingjie Li, Leiku Yang, Tingting Hou, Xingwei He, Jing Dong, Ziqiang Chen","doi":"10.1109/IGARSS.2012.6350338","DOIUrl":null,"url":null,"abstract":"MODIS and MISR are two main satellites provide aerosol observations. However, AOD products generated from these two sensors by different retrieval algorithms are inconsistent. In this paper, a semi-empirical optical fusion method was proposed to produce consistent AOD with different derived AOD datasets form MODIS and MISR. Using the semi-empirical optical algorithm, new merged AOD data sets were generated over China for 2010. We used level 2 cloud screened quality assured AERONET measurements to evaluate the merged AOD results. Our results showed that the combination of MODIS and MISR with this method could produce a more consistent, reliable AOD data with great improvement in spatial AOD coverage.","PeriodicalId":193438,"journal":{"name":"2012 IEEE International Geoscience and Remote Sensing Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A semi-empirical optical data fusion technique for merging aerosol optical depth over China\",\"authors\":\"Hui Xu, Yong Xue, J. Guang, Yingjie Li, Leiku Yang, Tingting Hou, Xingwei He, Jing Dong, Ziqiang Chen\",\"doi\":\"10.1109/IGARSS.2012.6350338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MODIS and MISR are two main satellites provide aerosol observations. However, AOD products generated from these two sensors by different retrieval algorithms are inconsistent. In this paper, a semi-empirical optical fusion method was proposed to produce consistent AOD with different derived AOD datasets form MODIS and MISR. Using the semi-empirical optical algorithm, new merged AOD data sets were generated over China for 2010. We used level 2 cloud screened quality assured AERONET measurements to evaluate the merged AOD results. Our results showed that the combination of MODIS and MISR with this method could produce a more consistent, reliable AOD data with great improvement in spatial AOD coverage.\",\"PeriodicalId\":193438,\"journal\":{\"name\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2012.6350338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2012.6350338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

MODIS和MISR是提供气溶胶观测的两颗主要卫星。然而,这两种传感器通过不同的检索算法生成的AOD结果并不一致。本文提出了一种基于MODIS和MISR的不同AOD衍生数据集的半经验光学融合方法,以获得一致的AOD。利用半经验光学算法,对2010年中国地区的AOD数据集进行了合并。我们使用2级云筛选质量保证AERONET测量来评估合并的AOD结果。结果表明,该方法结合MODIS和MISR可获得更加一致、可靠的AOD数据,AOD空间覆盖率有较大提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semi-empirical optical data fusion technique for merging aerosol optical depth over China
MODIS and MISR are two main satellites provide aerosol observations. However, AOD products generated from these two sensors by different retrieval algorithms are inconsistent. In this paper, a semi-empirical optical fusion method was proposed to produce consistent AOD with different derived AOD datasets form MODIS and MISR. Using the semi-empirical optical algorithm, new merged AOD data sets were generated over China for 2010. We used level 2 cloud screened quality assured AERONET measurements to evaluate the merged AOD results. Our results showed that the combination of MODIS and MISR with this method could produce a more consistent, reliable AOD data with great improvement in spatial AOD coverage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信