S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin
{"title":"CMOS多频锁相传感器在微生物学阻抗谱中的应用","authors":"S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin","doi":"10.1109/NEWCAS52662.2022.9842207","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CMOS Multi-Frequency Lock-in Sensor for Impedance Spectroscopy in Microbiology Applications\",\"authors\":\"S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin\",\"doi\":\"10.1109/NEWCAS52662.2022.9842207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.\",\"PeriodicalId\":198335,\"journal\":{\"name\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS52662.2022.9842207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS Multi-Frequency Lock-in Sensor for Impedance Spectroscopy in Microbiology Applications
This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.