CMOS多频锁相传感器在微生物学阻抗谱中的应用

S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin
{"title":"CMOS多频锁相传感器在微生物学阻抗谱中的应用","authors":"S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin","doi":"10.1109/NEWCAS52662.2022.9842207","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.","PeriodicalId":198335,"journal":{"name":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CMOS Multi-Frequency Lock-in Sensor for Impedance Spectroscopy in Microbiology Applications\",\"authors\":\"S. N. Hosseini, Vahid Khojasteh Lazarjan, M. Akram, B. Gosselin\",\"doi\":\"10.1109/NEWCAS52662.2022.9842207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.\",\"PeriodicalId\":198335,\"journal\":{\"name\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEWCAS52662.2022.9842207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 20th IEEE Interregional NEWCAS Conference (NEWCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEWCAS52662.2022.9842207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种用于微生物监测应用的CMOS锁相放大器(LIA)封装阻抗传感器的设计。该定制集成LIA采用0.18µm CMOS技术设计和制造。它包括一个全差分开关电容跨阻放大器,作为锁相放大器的主要组成部分。在本设计中,电容式跨阻放大器采用斩波稳定,以降低噪声,提高传感器的灵敏度。所提出的LIA包含一个质量因子为0.88的带通滤波器,用于在1,2,4和10khz的可选中心频率上传递信号;一个可编程增益放大器,一个混频器和一个低通滤波器,用于提取不同频率下微生物生长引起的阻抗变化。该跨阻放大器的增益为54.86 dB, 1 kHz时的输入参考噪声为58 pA/√Hz。整个传感器的灵敏度为240 mV/nA。在1.8V电源下,功耗为817.56µW,总谐波失真为-72.7 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS Multi-Frequency Lock-in Sensor for Impedance Spectroscopy in Microbiology Applications
This paper presents the design of a CMOS lock-in amplifier (LIA) encapsulated with an impedance sensor for microbial monitoring applications. The custom integrated LIA is designed and fabricated in a 0.18-µm CMOS technology. It includes a fully differential switched-capacitor transimpedance amplifier as the main building block of the lock-in amplifier. In this design, chopper stabilization is used in the capacitive transimpedance amplifier to reduce the noise and improve the sensor's sensitivity. The proposed LIA contains a band-pass filter with 0.88 quality factor to pass signals at selectable center frequencies of 1, 2, 4, and 10 kHz; a programmable gain amplifier, a mixer, and a low-pass filter to extract impedance changes caused by microorganism growth at different frequencies. The transimpedance amplifier has a gain of 54.86 dB, and an input-referred noise of 58 pA/√Hz at 1 kHz. The whole sensor has a sensitivity of 240 mV/nA. It consumes a power of 817.56 µW from a 1.8V power supply and has a total harmonic distortion of -72.7 dB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信