David Tedaldi, Guillermo Gallego, Elias Mueggler, D. Scaramuzza
{"title":"基于动态和主动像素视觉传感器(DAVIS)的特征检测与跟踪","authors":"David Tedaldi, Guillermo Gallego, Elias Mueggler, D. Scaramuzza","doi":"10.1109/EBCCSP.2016.7605086","DOIUrl":null,"url":null,"abstract":"Because standard cameras sample the scene at constant time intervals, they do not provide any information in the blind time between subsequent frames. However, for many high-speed robotic and vision applications, it is crucial to provide high-frequency measurement updates also during this blind time. This can be achieved using a novel vision sensor, called DAVIS, which combines a standard camera and an asynchronous event-based sensor in the same pixel array. The DAVIS encodes the visual content between two subsequent frames by an asynchronous stream of events that convey pixel-level brightness changes at microsecond resolution. We present the first algorithm to detect and track visual features using both the frames and the event data provided by the DAVIS. Features are first detected in the grayscale frames and then tracked asynchronously in the blind time between frames using the stream of events. To best take into account the hybrid characteristics of the DAVIS, features are built based on large, spatial contrast variations (i.e., visual edges), which are the source of most of the events generated by the sensor. An event-based algorithm is further presented to track the features using an iterative, geometric registration approach. The performance of the proposed method is evaluated on real data acquired by the DAVIS.","PeriodicalId":411767,"journal":{"name":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Feature detection and tracking with the dynamic and active-pixel vision sensor (DAVIS)\",\"authors\":\"David Tedaldi, Guillermo Gallego, Elias Mueggler, D. Scaramuzza\",\"doi\":\"10.1109/EBCCSP.2016.7605086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because standard cameras sample the scene at constant time intervals, they do not provide any information in the blind time between subsequent frames. However, for many high-speed robotic and vision applications, it is crucial to provide high-frequency measurement updates also during this blind time. This can be achieved using a novel vision sensor, called DAVIS, which combines a standard camera and an asynchronous event-based sensor in the same pixel array. The DAVIS encodes the visual content between two subsequent frames by an asynchronous stream of events that convey pixel-level brightness changes at microsecond resolution. We present the first algorithm to detect and track visual features using both the frames and the event data provided by the DAVIS. Features are first detected in the grayscale frames and then tracked asynchronously in the blind time between frames using the stream of events. To best take into account the hybrid characteristics of the DAVIS, features are built based on large, spatial contrast variations (i.e., visual edges), which are the source of most of the events generated by the sensor. An event-based algorithm is further presented to track the features using an iterative, geometric registration approach. The performance of the proposed method is evaluated on real data acquired by the DAVIS.\",\"PeriodicalId\":411767,\"journal\":{\"name\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP.2016.7605086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP.2016.7605086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature detection and tracking with the dynamic and active-pixel vision sensor (DAVIS)
Because standard cameras sample the scene at constant time intervals, they do not provide any information in the blind time between subsequent frames. However, for many high-speed robotic and vision applications, it is crucial to provide high-frequency measurement updates also during this blind time. This can be achieved using a novel vision sensor, called DAVIS, which combines a standard camera and an asynchronous event-based sensor in the same pixel array. The DAVIS encodes the visual content between two subsequent frames by an asynchronous stream of events that convey pixel-level brightness changes at microsecond resolution. We present the first algorithm to detect and track visual features using both the frames and the event data provided by the DAVIS. Features are first detected in the grayscale frames and then tracked asynchronously in the blind time between frames using the stream of events. To best take into account the hybrid characteristics of the DAVIS, features are built based on large, spatial contrast variations (i.e., visual edges), which are the source of most of the events generated by the sensor. An event-based algorithm is further presented to track the features using an iterative, geometric registration approach. The performance of the proposed method is evaluated on real data acquired by the DAVIS.