{"title":"SE-SqueezeNext在NXP BlueBox 2.0和NXP i.MX RT1060 MCU上的部署","authors":"R. T. N. Chappa, M. El-Sharkawy","doi":"10.1109/MIC50194.2020.9209612","DOIUrl":null,"url":null,"abstract":"Convolution neural system is being utilized in field of self-governing driving vehicles or driver assistance systems (ADAS), and has made extraordinary progress. Before the CNN, conventional AI calculations helped ADAS. Right now, there is an incredible investigation being done in DNNs like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN designs and made it increasingly appropriate to actualize on real-time embedded systems. Due to the model size complexity of many models, they cannot be deployed straight away on real-time systems. The most important requirement will be to have less model size without a tradeoff with accuracy. Squeeze-and-Excitation SqueezeNext which is an efficient DNN with best model accuracy of 92.60% and with least model size of 0.595MB is chosen to be deployed on NXP BlueBox 2.0 and NXP i.MX RT1060. This deployment is very successful because of its less size and better accuracy. The model is trained and validated on CIFAR-10 dataset.","PeriodicalId":351221,"journal":{"name":"2020 IEEE Midwest Industry Conference (MIC)","volume":"21 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deployment of SE-SqueezeNext on NXP BlueBox 2.0 and NXP i.MX RT1060 MCU\",\"authors\":\"R. T. N. Chappa, M. El-Sharkawy\",\"doi\":\"10.1109/MIC50194.2020.9209612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolution neural system is being utilized in field of self-governing driving vehicles or driver assistance systems (ADAS), and has made extraordinary progress. Before the CNN, conventional AI calculations helped ADAS. Right now, there is an incredible investigation being done in DNNs like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN designs and made it increasingly appropriate to actualize on real-time embedded systems. Due to the model size complexity of many models, they cannot be deployed straight away on real-time systems. The most important requirement will be to have less model size without a tradeoff with accuracy. Squeeze-and-Excitation SqueezeNext which is an efficient DNN with best model accuracy of 92.60% and with least model size of 0.595MB is chosen to be deployed on NXP BlueBox 2.0 and NXP i.MX RT1060. This deployment is very successful because of its less size and better accuracy. The model is trained and validated on CIFAR-10 dataset.\",\"PeriodicalId\":351221,\"journal\":{\"name\":\"2020 IEEE Midwest Industry Conference (MIC)\",\"volume\":\"21 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Midwest Industry Conference (MIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIC50194.2020.9209612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Midwest Industry Conference (MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC50194.2020.9209612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deployment of SE-SqueezeNext on NXP BlueBox 2.0 and NXP i.MX RT1060 MCU
Convolution neural system is being utilized in field of self-governing driving vehicles or driver assistance systems (ADAS), and has made extraordinary progress. Before the CNN, conventional AI calculations helped ADAS. Right now, there is an incredible investigation being done in DNNs like MobileNet, SqueezeNext & SqueezeNet. It improved the CNN designs and made it increasingly appropriate to actualize on real-time embedded systems. Due to the model size complexity of many models, they cannot be deployed straight away on real-time systems. The most important requirement will be to have less model size without a tradeoff with accuracy. Squeeze-and-Excitation SqueezeNext which is an efficient DNN with best model accuracy of 92.60% and with least model size of 0.595MB is chosen to be deployed on NXP BlueBox 2.0 and NXP i.MX RT1060. This deployment is very successful because of its less size and better accuracy. The model is trained and validated on CIFAR-10 dataset.