基于自适应平方根立方卡尔曼滤波的移动机器人SLAM算法

Jun Cai, X. Zhong
{"title":"基于自适应平方根立方卡尔曼滤波的移动机器人SLAM算法","authors":"Jun Cai, X. Zhong","doi":"10.1109/ICMA.2015.7237830","DOIUrl":null,"url":null,"abstract":"For simultaneous localization and mapping (SLAM) of mobile robots, an innovative solution is proposed, named adaptive square root cubature Kalman filter based SLAM algorithm (ASRCKF-SLAM). The main contribution of the proposed algorithm lies that: 1) Square root factors are used in the proposed ASRCKF-SLAM algorithm to improve the calculation efficiency by avoiding the time-consuming Cholesky decompositions. 2) Using the adaptive Sage-Husa estimator to solve the large estimation errors or even divergence problem caused by the time-varying or unknown noise. Simulation results obtained demonstrate that the proposed ASRCKF-SLAM algorithm is superior to the existed SLAM method in the aspect of estimation accuracy and computational efficiency.","PeriodicalId":286366,"journal":{"name":"2015 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An adaptive square root cubature Kalman filter based SLAM algorithm for mobile robots\",\"authors\":\"Jun Cai, X. Zhong\",\"doi\":\"10.1109/ICMA.2015.7237830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For simultaneous localization and mapping (SLAM) of mobile robots, an innovative solution is proposed, named adaptive square root cubature Kalman filter based SLAM algorithm (ASRCKF-SLAM). The main contribution of the proposed algorithm lies that: 1) Square root factors are used in the proposed ASRCKF-SLAM algorithm to improve the calculation efficiency by avoiding the time-consuming Cholesky decompositions. 2) Using the adaptive Sage-Husa estimator to solve the large estimation errors or even divergence problem caused by the time-varying or unknown noise. Simulation results obtained demonstrate that the proposed ASRCKF-SLAM algorithm is superior to the existed SLAM method in the aspect of estimation accuracy and computational efficiency.\",\"PeriodicalId\":286366,\"journal\":{\"name\":\"2015 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Mechatronics and Automation (ICMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2015.7237830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2015.7237830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对移动机器人的同步定位与映射问题,提出了一种基于自适应平方根立方卡尔曼滤波的同步定位与映射算法(ASRCKF-SLAM)。本文算法的主要贡献在于:1)在ASRCKF-SLAM算法中使用平方根因子,避免了耗时的Cholesky分解,提高了计算效率。2)利用自适应Sage-Husa估计器解决了时变或未知噪声引起的估计误差大甚至发散问题。仿真结果表明,所提出的ASRCKF-SLAM算法在估计精度和计算效率方面都优于现有的SLAM方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive square root cubature Kalman filter based SLAM algorithm for mobile robots
For simultaneous localization and mapping (SLAM) of mobile robots, an innovative solution is proposed, named adaptive square root cubature Kalman filter based SLAM algorithm (ASRCKF-SLAM). The main contribution of the proposed algorithm lies that: 1) Square root factors are used in the proposed ASRCKF-SLAM algorithm to improve the calculation efficiency by avoiding the time-consuming Cholesky decompositions. 2) Using the adaptive Sage-Husa estimator to solve the large estimation errors or even divergence problem caused by the time-varying or unknown noise. Simulation results obtained demonstrate that the proposed ASRCKF-SLAM algorithm is superior to the existed SLAM method in the aspect of estimation accuracy and computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信