基于视觉触觉和置信度校准的神经网络对结直肠癌息肉的可靠分类

Siddhartha Kapuria, Tarunraj G. Mohanraj, Nethra Venkatayogi, Ozdemir Can Kara, Y. Hirata, P. Minot, Ariel Kapusta, N. Ikoma, F. Alambeigi
{"title":"基于视觉触觉和置信度校准的神经网络对结直肠癌息肉的可靠分类","authors":"Siddhartha Kapuria, Tarunraj G. Mohanraj, Nethra Venkatayogi, Ozdemir Can Kara, Y. Hirata, P. Minot, Ariel Kapusta, N. Ikoma, F. Alambeigi","doi":"10.1109/ISMR57123.2023.10130197","DOIUrl":null,"url":null,"abstract":"In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VSTS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics.","PeriodicalId":276757,"journal":{"name":"2023 International Symposium on Medical Robotics (ISMR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks\",\"authors\":\"Siddhartha Kapuria, Tarunraj G. Mohanraj, Nethra Venkatayogi, Ozdemir Can Kara, Y. Hirata, P. Minot, Ariel Kapusta, N. Ikoma, F. Alambeigi\",\"doi\":\"10.1109/ISMR57123.2023.10130197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VSTS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics.\",\"PeriodicalId\":276757,\"journal\":{\"name\":\"2023 International Symposium on Medical Robotics (ISMR)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Symposium on Medical Robotics (ISMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMR57123.2023.10130197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Symposium on Medical Robotics (ISMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMR57123.2023.10130197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本研究中,为了解决现有基于人工智能的结直肠癌(CRC)息肉分类技术的过度自信输出,我们提出了一个置信度校准的残差神经网络。利用一种新颖的基于视觉的触觉传感(VS-TS)系统和独特的CRC息肉幻象,我们证明了传统的指标,如准确性和精度不足以封装模型的性能,以处理敏感的CRC息肉诊断。为此,我们开发了一个残差神经网络分类器,并通过温度缩放的后处理方法解决了CRC息肉分类的过度自信输出。为了评估所提出的方法,我们在获得的VSTS纹理图像中引入噪声和模糊,并通过可靠性图和其他统计指标测试模型对非理想输入的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Reliable Colorectal Cancer Polyps Classification via Vision Based Tactile Sensing and Confidence-Calibrated Neural Networks
In this study, toward addressing the over-confident outputs of existing artificial intelligence-based colorectal cancer (CRC) polyp classification techniques, we propose a confidence-calibrated residual neural network. Utilizing a novel vision-based tactile sensing (VS-TS) system and unique CRC polyp phantoms, we demonstrate that traditional metrics such as accuracy and precision are not sufficient to encapsulate model performance for handling a sensitive CRC polyp diagnosis. To this end, we develop a residual neural network classifier and address its over-confident outputs for CRC polyps classification via the post-processing method of temperature scaling. To evaluate the proposed method, we introduce noise and blur to the obtained textural images of the VSTS and test the model's reliability for non-ideal inputs through reliability diagrams and other statistical metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信