M. van Duuren, R. van Schaijk, M. Slotboom, P. Tello, N. Akil, A. H. Miranda, D. Golubović
{"title":"突破高k材料嵌入式非易失性存储器的缩放极限","authors":"M. van Duuren, R. van Schaijk, M. Slotboom, P. Tello, N. Akil, A. H. Miranda, D. Golubović","doi":"10.1109/ICICDT.2006.220786","DOIUrl":null,"url":null,"abstract":"In this paper, two alternative cell concepts to overcome these issues were discussed: conventional floating gate cells with high-K inter-poly dielectrics (IPD) and nitride trapping devices with high-K materials. In both concepts, the reduced equivalent oxide thickness (EOT) of the high-K layers helps reducing VPE, whereas the low leakage current ensures a good data retention. In this work, only hafnium based high-K materials were used: hafnium oxide (HfO2) and nitrided hafnium silicate (HfSiON), both deposited by MOCVD. The choice for these materials was based on their expected availability in the sub-45nm CMOS nodes","PeriodicalId":447050,"journal":{"name":"2006 IEEE International Conference on IC Design and Technology","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Pushing the scaling limits of embedded non-volatile memories with high-K materials\",\"authors\":\"M. van Duuren, R. van Schaijk, M. Slotboom, P. Tello, N. Akil, A. H. Miranda, D. Golubović\",\"doi\":\"10.1109/ICICDT.2006.220786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two alternative cell concepts to overcome these issues were discussed: conventional floating gate cells with high-K inter-poly dielectrics (IPD) and nitride trapping devices with high-K materials. In both concepts, the reduced equivalent oxide thickness (EOT) of the high-K layers helps reducing VPE, whereas the low leakage current ensures a good data retention. In this work, only hafnium based high-K materials were used: hafnium oxide (HfO2) and nitrided hafnium silicate (HfSiON), both deposited by MOCVD. The choice for these materials was based on their expected availability in the sub-45nm CMOS nodes\",\"PeriodicalId\":447050,\"journal\":{\"name\":\"2006 IEEE International Conference on IC Design and Technology\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on IC Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICDT.2006.220786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on IC Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT.2006.220786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pushing the scaling limits of embedded non-volatile memories with high-K materials
In this paper, two alternative cell concepts to overcome these issues were discussed: conventional floating gate cells with high-K inter-poly dielectrics (IPD) and nitride trapping devices with high-K materials. In both concepts, the reduced equivalent oxide thickness (EOT) of the high-K layers helps reducing VPE, whereas the low leakage current ensures a good data retention. In this work, only hafnium based high-K materials were used: hafnium oxide (HfO2) and nitrided hafnium silicate (HfSiON), both deposited by MOCVD. The choice for these materials was based on their expected availability in the sub-45nm CMOS nodes