宇宙

Michail Giannoulis, H. Kondylakis, Emmanouil I. Marakakis
{"title":"宇宙","authors":"Michail Giannoulis, H. Kondylakis, Emmanouil I. Marakakis","doi":"10.1145/3197768.3201555","DOIUrl":null,"url":null,"abstract":"The huge diversity, big quantity of data and information, and the requirements for knowledge extraction out of them put new challenges for knowledge management, synthesis, conflict detection and reasoning. In this paper, we present COSMOS, a knowledge system that fully addresses these challenges, in an efficient way, paving the way for a new generation of knowledge systems. Using our approach, it is possible for domain experts to generate temporal knowledge rules. As those rules are saved to our knowledge base, a conflict detection mechanism detects and solves rule conflicts. Then, an inference engine is able to perform efficiently, accurate decisions, based on available factual information using reasoning and handling uncertainty. Ontologies are used to model both the factual information and the data items in the rules enabling also interoperability with existing systems. To validate our approach, as an application scenario, we deploy our infrastructure in a health environment where doctors provide rules that are activated over a patient health record. Preliminary results indicate the benefits of our approach for decision support based on health data, successfully identifying adverse events and enabling intelligent patient monitoring.","PeriodicalId":130190,"journal":{"name":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"COSMOS\",\"authors\":\"Michail Giannoulis, H. Kondylakis, Emmanouil I. Marakakis\",\"doi\":\"10.1145/3197768.3201555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The huge diversity, big quantity of data and information, and the requirements for knowledge extraction out of them put new challenges for knowledge management, synthesis, conflict detection and reasoning. In this paper, we present COSMOS, a knowledge system that fully addresses these challenges, in an efficient way, paving the way for a new generation of knowledge systems. Using our approach, it is possible for domain experts to generate temporal knowledge rules. As those rules are saved to our knowledge base, a conflict detection mechanism detects and solves rule conflicts. Then, an inference engine is able to perform efficiently, accurate decisions, based on available factual information using reasoning and handling uncertainty. Ontologies are used to model both the factual information and the data items in the rules enabling also interoperability with existing systems. To validate our approach, as an application scenario, we deploy our infrastructure in a health environment where doctors provide rules that are activated over a patient health record. Preliminary results indicate the benefits of our approach for decision support based on health data, successfully identifying adverse events and enabling intelligent patient monitoring.\",\"PeriodicalId\":130190,\"journal\":{\"name\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3197768.3201555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th PErvasive Technologies Related to Assistive Environments Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3197768.3201555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
COSMOS
The huge diversity, big quantity of data and information, and the requirements for knowledge extraction out of them put new challenges for knowledge management, synthesis, conflict detection and reasoning. In this paper, we present COSMOS, a knowledge system that fully addresses these challenges, in an efficient way, paving the way for a new generation of knowledge systems. Using our approach, it is possible for domain experts to generate temporal knowledge rules. As those rules are saved to our knowledge base, a conflict detection mechanism detects and solves rule conflicts. Then, an inference engine is able to perform efficiently, accurate decisions, based on available factual information using reasoning and handling uncertainty. Ontologies are used to model both the factual information and the data items in the rules enabling also interoperability with existing systems. To validate our approach, as an application scenario, we deploy our infrastructure in a health environment where doctors provide rules that are activated over a patient health record. Preliminary results indicate the benefits of our approach for decision support based on health data, successfully identifying adverse events and enabling intelligent patient monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信