M. Kagerer, Kenji L. Eiler, Thomas Ottnad, F. Irlinger, T. Lueth
{"title":"采用快速原型技术制造的压电喷墨按需实验平台使未来技术成为可能","authors":"M. Kagerer, Kenji L. Eiler, Thomas Ottnad, F. Irlinger, T. Lueth","doi":"10.1109/ROBIO.2012.6491140","DOIUrl":null,"url":null,"abstract":"A novel experimentation platform, which is based on a piezoelectrically driven inkjet printhead and on a support plate, is presented. A huge number of fluids has to be ejected due to the large variety of possible applications for inkjet printheads. Each fluid with its special characteristics usually requires a redesign of the printhead to be able to be ejected. This inkjet printhead is manufactured in a batch process with rapid prototyping techniques in order to be able to be adapted to new boundary conditions in a time saving manner. The manufacturing time only amounts less than 30 minutes. The inkjet printhead is inserted into a support plate. Here, it is electrically as well as fluidically connected without any soldering or gluing processes. Heating elements, temperature as well as pressure sensors, and a fluid reservoir are integrated. The reproducibility of experiments is thereby given. Furthermore, printing fluids with solid-liquid phase transition is possible. The inkjet printhead can be changed within only one minute.","PeriodicalId":426468,"journal":{"name":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Piezo inkjet drop-on-demand experimentation platform manufactured with rapid prototyping techniques enabling future technologies\",\"authors\":\"M. Kagerer, Kenji L. Eiler, Thomas Ottnad, F. Irlinger, T. Lueth\",\"doi\":\"10.1109/ROBIO.2012.6491140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel experimentation platform, which is based on a piezoelectrically driven inkjet printhead and on a support plate, is presented. A huge number of fluids has to be ejected due to the large variety of possible applications for inkjet printheads. Each fluid with its special characteristics usually requires a redesign of the printhead to be able to be ejected. This inkjet printhead is manufactured in a batch process with rapid prototyping techniques in order to be able to be adapted to new boundary conditions in a time saving manner. The manufacturing time only amounts less than 30 minutes. The inkjet printhead is inserted into a support plate. Here, it is electrically as well as fluidically connected without any soldering or gluing processes. Heating elements, temperature as well as pressure sensors, and a fluid reservoir are integrated. The reproducibility of experiments is thereby given. Furthermore, printing fluids with solid-liquid phase transition is possible. The inkjet printhead can be changed within only one minute.\",\"PeriodicalId\":426468,\"journal\":{\"name\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2012.6491140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2012.6491140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel experimentation platform, which is based on a piezoelectrically driven inkjet printhead and on a support plate, is presented. A huge number of fluids has to be ejected due to the large variety of possible applications for inkjet printheads. Each fluid with its special characteristics usually requires a redesign of the printhead to be able to be ejected. This inkjet printhead is manufactured in a batch process with rapid prototyping techniques in order to be able to be adapted to new boundary conditions in a time saving manner. The manufacturing time only amounts less than 30 minutes. The inkjet printhead is inserted into a support plate. Here, it is electrically as well as fluidically connected without any soldering or gluing processes. Heating elements, temperature as well as pressure sensors, and a fluid reservoir are integrated. The reproducibility of experiments is thereby given. Furthermore, printing fluids with solid-liquid phase transition is possible. The inkjet printhead can be changed within only one minute.