同步磁阻电机的人工神经网络建模

T. A. Sarikaya, Caner Korel, L. T. Ergene
{"title":"同步磁阻电机的人工神经网络建模","authors":"T. A. Sarikaya, Caner Korel, L. T. Ergene","doi":"10.1109/SIELA54794.2022.9845776","DOIUrl":null,"url":null,"abstract":"Artificial neural networks are applied in different application areas, and electrical machine implementation is one of them. The structures, resembling the motor behavior like motor controllers, observers, parameter prediction units, can also be modeled with artificial neural networks. Choosing network structure, layer, and neuron numbers play a critical role to make the model successful. In this study, multilayer feedforward and recurrent neural networks are trained with various layer and neuron numbers to compare their speed and torque tracking performances. The average training time for each combination and optimal window for neuron and layer numbers are also evaluated.","PeriodicalId":150282,"journal":{"name":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial Neural Network Modeling of a Synchronous Reluctance Motor\",\"authors\":\"T. A. Sarikaya, Caner Korel, L. T. Ergene\",\"doi\":\"10.1109/SIELA54794.2022.9845776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial neural networks are applied in different application areas, and electrical machine implementation is one of them. The structures, resembling the motor behavior like motor controllers, observers, parameter prediction units, can also be modeled with artificial neural networks. Choosing network structure, layer, and neuron numbers play a critical role to make the model successful. In this study, multilayer feedforward and recurrent neural networks are trained with various layer and neuron numbers to compare their speed and torque tracking performances. The average training time for each combination and optimal window for neuron and layer numbers are also evaluated.\",\"PeriodicalId\":150282,\"journal\":{\"name\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIELA54794.2022.9845776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 22nd International Symposium on Electrical Apparatus and Technologies (SIELA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIELA54794.2022.9845776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工神经网络应用于不同的应用领域,电机实现是其中之一。类似于电机行为的结构,如电机控制器、观测器、参数预测单元,也可以用人工神经网络建模。网络结构、层数和神经元数量的选择对模型的成功起着至关重要的作用。在本研究中,采用不同的层数和神经元数训练多层前馈和递归神经网络,比较它们的速度和转矩跟踪性能。对每个组合的平均训练时间以及神经元和层数的最优窗口也进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Neural Network Modeling of a Synchronous Reluctance Motor
Artificial neural networks are applied in different application areas, and electrical machine implementation is one of them. The structures, resembling the motor behavior like motor controllers, observers, parameter prediction units, can also be modeled with artificial neural networks. Choosing network structure, layer, and neuron numbers play a critical role to make the model successful. In this study, multilayer feedforward and recurrent neural networks are trained with various layer and neuron numbers to compare their speed and torque tracking performances. The average training time for each combination and optimal window for neuron and layer numbers are also evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信