{"title":"纳米级粘土层间化学结构:增强阻燃性能的前兆","authors":"S. Sonkaria, H. J. Kim","doi":"10.5772/INTECHOPEN.95788","DOIUrl":null,"url":null,"abstract":"Nanomaterials are proving to be pivotal to the evolution of controllable, cost-effective and environmentally safe technologies. An important concern is the impact of low-dimensional compositional materials and their ability to significantly reduce the hazardous nature of flame retardants that are reputably harmful through unchecked inhalation. While eco-friendly and recyclable alternatives are necessary requirements to function as replacements for the ‘Next Generation’ of flame retardants, the underlying ‘Chemistry’ at the nanoscale is unfolding unlocking vital clues enabling the development of more effective retardants. In this direction, the dimensional order of particles in naturally occurring nanoclay materials and their associated properties as composites are gaining increasing attention as important constituents of flame retardants. In this review, we examine closer the compositional importance of intercalated/exfoliated nanoclay networks essential to retardant functionality exploring the chemical significance and discussing underlying mechanisms where possible.","PeriodicalId":408707,"journal":{"name":"Flame Retardants [Working Title]","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nanoscale Configuration of Clay-Interlayer Chemistry: A Precursor to Enhancing Flame Retardant Properties\",\"authors\":\"S. Sonkaria, H. J. Kim\",\"doi\":\"10.5772/INTECHOPEN.95788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanomaterials are proving to be pivotal to the evolution of controllable, cost-effective and environmentally safe technologies. An important concern is the impact of low-dimensional compositional materials and their ability to significantly reduce the hazardous nature of flame retardants that are reputably harmful through unchecked inhalation. While eco-friendly and recyclable alternatives are necessary requirements to function as replacements for the ‘Next Generation’ of flame retardants, the underlying ‘Chemistry’ at the nanoscale is unfolding unlocking vital clues enabling the development of more effective retardants. In this direction, the dimensional order of particles in naturally occurring nanoclay materials and their associated properties as composites are gaining increasing attention as important constituents of flame retardants. In this review, we examine closer the compositional importance of intercalated/exfoliated nanoclay networks essential to retardant functionality exploring the chemical significance and discussing underlying mechanisms where possible.\",\"PeriodicalId\":408707,\"journal\":{\"name\":\"Flame Retardants [Working Title]\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flame Retardants [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.95788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flame Retardants [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.95788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoscale Configuration of Clay-Interlayer Chemistry: A Precursor to Enhancing Flame Retardant Properties
Nanomaterials are proving to be pivotal to the evolution of controllable, cost-effective and environmentally safe technologies. An important concern is the impact of low-dimensional compositional materials and their ability to significantly reduce the hazardous nature of flame retardants that are reputably harmful through unchecked inhalation. While eco-friendly and recyclable alternatives are necessary requirements to function as replacements for the ‘Next Generation’ of flame retardants, the underlying ‘Chemistry’ at the nanoscale is unfolding unlocking vital clues enabling the development of more effective retardants. In this direction, the dimensional order of particles in naturally occurring nanoclay materials and their associated properties as composites are gaining increasing attention as important constituents of flame retardants. In this review, we examine closer the compositional importance of intercalated/exfoliated nanoclay networks essential to retardant functionality exploring the chemical significance and discussing underlying mechanisms where possible.