实数矩阵联合特征值分解的快速算法

Rémi André, Tual Trainini, Xavier Luciani, E. Moreau
{"title":"实数矩阵联合特征值分解的快速算法","authors":"Rémi André, Tual Trainini, Xavier Luciani, E. Moreau","doi":"10.1109/EUSIPCO.2015.7362597","DOIUrl":null,"url":null,"abstract":"We introduce an original algorithm to perform the joint eigen value decomposition of a set of real matrices. The proposed algorithm is iterative but does not resort to any sweeping procedure such as classical Jacobi approaches. Instead we use a first order approximation of the inverse of the matrix of eigen vectors and at each iteration the whole matrix of eigenvectors is updated. This algorithm is called Joint eigenvalue Decomposition using Taylor Expansion and has been designed in order to decrease the overall numerical complexity of the procedure (which is a trade off between the number of iterations and the cost of each iteration) while keeping the same level of performances. Numerical comparisons with reference algorithms show that this goal is achieved.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A fast algorithm for joint eigenvalue decomposition of real matrices\",\"authors\":\"Rémi André, Tual Trainini, Xavier Luciani, E. Moreau\",\"doi\":\"10.1109/EUSIPCO.2015.7362597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce an original algorithm to perform the joint eigen value decomposition of a set of real matrices. The proposed algorithm is iterative but does not resort to any sweeping procedure such as classical Jacobi approaches. Instead we use a first order approximation of the inverse of the matrix of eigen vectors and at each iteration the whole matrix of eigenvectors is updated. This algorithm is called Joint eigenvalue Decomposition using Taylor Expansion and has been designed in order to decrease the overall numerical complexity of the procedure (which is a trade off between the number of iterations and the cost of each iteration) while keeping the same level of performances. Numerical comparisons with reference algorithms show that this goal is achieved.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

介绍了一种对实数矩阵进行联合特征值分解的新颖算法。所提出的算法是迭代的,但不诉诸于任何清扫过程,如经典的雅可比方法。相反,我们使用特征向量矩阵逆的一阶近似,并且在每次迭代时,整个特征向量矩阵都被更新。这种算法被称为使用泰勒展开的联合特征值分解,其设计目的是在保持相同性能水平的同时降低过程的整体数值复杂性(这是迭代次数和每次迭代成本之间的权衡)。与参考算法的数值比较表明,这一目标是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast algorithm for joint eigenvalue decomposition of real matrices
We introduce an original algorithm to perform the joint eigen value decomposition of a set of real matrices. The proposed algorithm is iterative but does not resort to any sweeping procedure such as classical Jacobi approaches. Instead we use a first order approximation of the inverse of the matrix of eigen vectors and at each iteration the whole matrix of eigenvectors is updated. This algorithm is called Joint eigenvalue Decomposition using Taylor Expansion and has been designed in order to decrease the overall numerical complexity of the procedure (which is a trade off between the number of iterations and the cost of each iteration) while keeping the same level of performances. Numerical comparisons with reference algorithms show that this goal is achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信