基于共识的归一化流控制:学习双臂协调的案例研究

Hang Yin, Christos K. Verginis, D. Kragic
{"title":"基于共识的归一化流控制:学习双臂协调的案例研究","authors":"Hang Yin, Christos K. Verginis, D. Kragic","doi":"10.1109/IROS47612.2022.9981827","DOIUrl":null,"url":null,"abstract":"We develop two consensus-based learning algorithms for multi-robot systems applied on complex tasks involving collision constraints and force interactions, such as the cooperative peg-in-hole placement. The proposed algorithms integrate multi-robot distributed consensus and normalizing-flow-based reinforcement learning. The algorithms guarantee the stability and the consensus of the multi-robot system's generalized variables in a transformed space. This transformed space is obtained via a diffeomorphic transformation parameterized by normalizing-flow models that the algorithms use to train the underlying task, learning hence skillful, dexterous trajectories required for the task accomplishment. We validate the proposed algorithms by parameterizing reinforcement learning policies, demonstrating efficient cooperative learning, and strong generalization of dual-arm assembly skills in a dynamics-engine simulator.","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consensus-based Normalizing-Flow Control: A Case Study in Learning Dual-Arm Coordination\",\"authors\":\"Hang Yin, Christos K. Verginis, D. Kragic\",\"doi\":\"10.1109/IROS47612.2022.9981827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop two consensus-based learning algorithms for multi-robot systems applied on complex tasks involving collision constraints and force interactions, such as the cooperative peg-in-hole placement. The proposed algorithms integrate multi-robot distributed consensus and normalizing-flow-based reinforcement learning. The algorithms guarantee the stability and the consensus of the multi-robot system's generalized variables in a transformed space. This transformed space is obtained via a diffeomorphic transformation parameterized by normalizing-flow models that the algorithms use to train the underlying task, learning hence skillful, dexterous trajectories required for the task accomplishment. We validate the proposed algorithms by parameterizing reinforcement learning policies, demonstrating efficient cooperative learning, and strong generalization of dual-arm assembly skills in a dynamics-engine simulator.\",\"PeriodicalId\":431373,\"journal\":{\"name\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS47612.2022.9981827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了两种基于共识的多机器人系统学习算法,应用于涉及碰撞约束和力相互作用的复杂任务,如合作钉孔放置。该算法集成了多机器人分布式共识和基于归一化流的强化学习。该算法保证了多机器人系统广义变量在变换空间中的稳定性和一致性。这个转换空间是通过一个由归一化流模型参数化的微分变换获得的,该算法使用归一化流模型来训练潜在的任务,从而学习完成任务所需的熟练、灵巧的轨迹。我们通过参数化强化学习策略来验证所提出的算法,展示了高效的合作学习,并在动态引擎模拟器中展示了双臂装配技能的强泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus-based Normalizing-Flow Control: A Case Study in Learning Dual-Arm Coordination
We develop two consensus-based learning algorithms for multi-robot systems applied on complex tasks involving collision constraints and force interactions, such as the cooperative peg-in-hole placement. The proposed algorithms integrate multi-robot distributed consensus and normalizing-flow-based reinforcement learning. The algorithms guarantee the stability and the consensus of the multi-robot system's generalized variables in a transformed space. This transformed space is obtained via a diffeomorphic transformation parameterized by normalizing-flow models that the algorithms use to train the underlying task, learning hence skillful, dexterous trajectories required for the task accomplishment. We validate the proposed algorithms by parameterizing reinforcement learning policies, demonstrating efficient cooperative learning, and strong generalization of dual-arm assembly skills in a dynamics-engine simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信