Deepankar Dangwal, M. Behm, Xiaowei Chen, G. Soreghan
{"title":"用被动地震方法成像一个神秘的古山谷(unawweep Canyon, Colorado,美国)","authors":"Deepankar Dangwal, M. Behm, Xiaowei Chen, G. Soreghan","doi":"10.1785/0320220048","DOIUrl":null,"url":null,"abstract":"\n High-resolution passive seismic imaging of shallow subsurface structures is often challenged by the scarcity of coherent body-wave energy in ambient noise recorded at surface stations. We show that the autocorrelation (AC) of teleseismic P-wave coda extracted from just one month of continuous recording at 5 Hz geophones can overcome this limitation. We apply this method to investigate the longitudinal subsurface bedrock structure of Unaweep Canyon—a paleovalley in western Colorado (United States) with complex evolution. Both fluvial and glacial processes have been proposed to explain the canyon’s genesis and morphology. The teleseismic P-wave coda AC retrieves zero-offset reflections from the shallow (200–500 m depth) basement interface at 120 stations along a 5 km long profile. In addition, we invert interferometrically retrieved surface-wave dispersion for the shear-wave structure of the sedimentary fill. Combined interpretation of these results and other geophysical and well data suggests an overdeepened basement geometry most consistent with glacial processes.","PeriodicalId":273018,"journal":{"name":"The Seismic Record","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging an Enigmatic Paleovalley with Passive Seismic Methods (Unaweep Canyon, Colorado, United States)\",\"authors\":\"Deepankar Dangwal, M. Behm, Xiaowei Chen, G. Soreghan\",\"doi\":\"10.1785/0320220048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n High-resolution passive seismic imaging of shallow subsurface structures is often challenged by the scarcity of coherent body-wave energy in ambient noise recorded at surface stations. We show that the autocorrelation (AC) of teleseismic P-wave coda extracted from just one month of continuous recording at 5 Hz geophones can overcome this limitation. We apply this method to investigate the longitudinal subsurface bedrock structure of Unaweep Canyon—a paleovalley in western Colorado (United States) with complex evolution. Both fluvial and glacial processes have been proposed to explain the canyon’s genesis and morphology. The teleseismic P-wave coda AC retrieves zero-offset reflections from the shallow (200–500 m depth) basement interface at 120 stations along a 5 km long profile. In addition, we invert interferometrically retrieved surface-wave dispersion for the shear-wave structure of the sedimentary fill. Combined interpretation of these results and other geophysical and well data suggests an overdeepened basement geometry most consistent with glacial processes.\",\"PeriodicalId\":273018,\"journal\":{\"name\":\"The Seismic Record\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seismic Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1785/0320220048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seismic Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1785/0320220048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging an Enigmatic Paleovalley with Passive Seismic Methods (Unaweep Canyon, Colorado, United States)
High-resolution passive seismic imaging of shallow subsurface structures is often challenged by the scarcity of coherent body-wave energy in ambient noise recorded at surface stations. We show that the autocorrelation (AC) of teleseismic P-wave coda extracted from just one month of continuous recording at 5 Hz geophones can overcome this limitation. We apply this method to investigate the longitudinal subsurface bedrock structure of Unaweep Canyon—a paleovalley in western Colorado (United States) with complex evolution. Both fluvial and glacial processes have been proposed to explain the canyon’s genesis and morphology. The teleseismic P-wave coda AC retrieves zero-offset reflections from the shallow (200–500 m depth) basement interface at 120 stations along a 5 km long profile. In addition, we invert interferometrically retrieved surface-wave dispersion for the shear-wave structure of the sedimentary fill. Combined interpretation of these results and other geophysical and well data suggests an overdeepened basement geometry most consistent with glacial processes.