{"title":"关于环面结的不可定向4属的一种改进","authors":"J. Sabloff","doi":"10.1090/bproc/166","DOIUrl":null,"url":null,"abstract":"In formulating a non-orientable analogue of the Milnor Conjecture on the \n\n \n 4\n 4\n \n\n-genus of torus knots, Batson [Math. Res. Lett. 21 (2014), pp. 423–436] developed an elegant construction that produces a smooth non-orientable spanning surface in \n\n \n \n B\n 4\n \n B^4\n \n\n for a given torus knot in \n\n \n \n S\n 3\n \n S^3\n \n\n. While Lobb [Math. Res. Lett. 26 (2019), pp. 1789] showed that Batson’s surfaces do not always minimize the non-orientable \n\n \n 4\n 4\n \n\n-genus, we prove that they do minimize among surfaces that share their normal Euler number. We also determine the possible pairs of normal Euler number and first Betti number for non-orientable surfaces whose boundary lies in a class of torus knots for which Batson’s surfaces are non-orientable \n\n \n 4\n 4\n \n\n-genus minimizers.","PeriodicalId":106316,"journal":{"name":"Proceedings of the American Mathematical Society, Series B","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a refinement of the non-orientable 4-genus of Torus knots\",\"authors\":\"J. Sabloff\",\"doi\":\"10.1090/bproc/166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In formulating a non-orientable analogue of the Milnor Conjecture on the \\n\\n \\n 4\\n 4\\n \\n\\n-genus of torus knots, Batson [Math. Res. Lett. 21 (2014), pp. 423–436] developed an elegant construction that produces a smooth non-orientable spanning surface in \\n\\n \\n \\n B\\n 4\\n \\n B^4\\n \\n\\n for a given torus knot in \\n\\n \\n \\n S\\n 3\\n \\n S^3\\n \\n\\n. While Lobb [Math. Res. Lett. 26 (2019), pp. 1789] showed that Batson’s surfaces do not always minimize the non-orientable \\n\\n \\n 4\\n 4\\n \\n\\n-genus, we prove that they do minimize among surfaces that share their normal Euler number. We also determine the possible pairs of normal Euler number and first Betti number for non-orientable surfaces whose boundary lies in a class of torus knots for which Batson’s surfaces are non-orientable \\n\\n \\n 4\\n 4\\n \\n\\n-genus minimizers.\",\"PeriodicalId\":106316,\"journal\":{\"name\":\"Proceedings of the American Mathematical Society, Series B\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/bproc/166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/bproc/166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在关于环面结的4 - 4属的密尔诺猜想的一个不可定向的类比的表述中,巴特森[数学]。Res. Lett. 21 (2014), pp. 423-436]开发了一种优雅的结构,该结构可以在s3s3s ^3的给定环面结中产生b4b4中光滑的不可定向跨越表面。而洛布[数学]。Res. Lett. 26 (2019), pp. 1789]表明Batson的曲面并不总是最小化不可定向的44 -属,我们证明它们在共享其正常欧拉数的曲面之间确实最小化。我们还确定了非定向曲面的正欧拉数和第一Betti数的可能对,其边界位于一类环面结中,其中Batson曲面是不可定向的4个4属极小值。
On a refinement of the non-orientable 4-genus of Torus knots
In formulating a non-orientable analogue of the Milnor Conjecture on the
4
4
-genus of torus knots, Batson [Math. Res. Lett. 21 (2014), pp. 423–436] developed an elegant construction that produces a smooth non-orientable spanning surface in
B
4
B^4
for a given torus knot in
S
3
S^3
. While Lobb [Math. Res. Lett. 26 (2019), pp. 1789] showed that Batson’s surfaces do not always minimize the non-orientable
4
4
-genus, we prove that they do minimize among surfaces that share their normal Euler number. We also determine the possible pairs of normal Euler number and first Betti number for non-orientable surfaces whose boundary lies in a class of torus knots for which Batson’s surfaces are non-orientable
4
4
-genus minimizers.