Kevin G. Gim, Maxine He, Mahshid Mansouri, Yinan Pei, E. Ripperger, Christopher M. Zallek, E. Hsiao-Wecksler
{"title":"铅管刚性系列弹性肘神经学考试训练模拟器的研制","authors":"Kevin G. Gim, Maxine He, Mahshid Mansouri, Yinan Pei, E. Ripperger, Christopher M. Zallek, E. Hsiao-Wecksler","doi":"10.1109/ICRA48506.2021.9560891","DOIUrl":null,"url":null,"abstract":"This paper describes the development of a 1-DOF kinesthetic force display device in the form of an arm training simulator that replicates the haptic feeling of lead-pipe rigidity in the elbow joint. Patients with lead-pipe rigidity have uniformly elevated muscle tone throughout the range of motion, which is an important clinical sign for diagnosing Parkinson’s disease during a neurological examination. The simulator could provide training opportunities for healthcare trainees to learn and practice the assessment technique for lead-pipe rigidity. The simulator was driven by a series elastic actuator in order to have more accurate joint torque control in a safe and cost-effective manner for rendering abnormal muscle resistance. A mathematical model of lead-pipe rigidity based on hyperbolic tangent was proposed to recreate the elevated muscle resistance at different Unified Parkinson’s Disease Rating Scale (UPDRS) 0-3. Performance of the simulator was evaluated through benchtop tests and rigidity simulation tests. Preliminary results suggested the simulator had good torque control accuracy (an average RMSE < 0.27 Nm) and good fidelity in mimicking clinically-measured lead-pipe rigidity at UPDRS 0-3.","PeriodicalId":108312,"journal":{"name":"2021 IEEE International Conference on Robotics and Automation (ICRA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of a Series Elastic Elbow Neurological Exam Training Simulator for Lead-pipe Rigidity*\",\"authors\":\"Kevin G. Gim, Maxine He, Mahshid Mansouri, Yinan Pei, E. Ripperger, Christopher M. Zallek, E. Hsiao-Wecksler\",\"doi\":\"10.1109/ICRA48506.2021.9560891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of a 1-DOF kinesthetic force display device in the form of an arm training simulator that replicates the haptic feeling of lead-pipe rigidity in the elbow joint. Patients with lead-pipe rigidity have uniformly elevated muscle tone throughout the range of motion, which is an important clinical sign for diagnosing Parkinson’s disease during a neurological examination. The simulator could provide training opportunities for healthcare trainees to learn and practice the assessment technique for lead-pipe rigidity. The simulator was driven by a series elastic actuator in order to have more accurate joint torque control in a safe and cost-effective manner for rendering abnormal muscle resistance. A mathematical model of lead-pipe rigidity based on hyperbolic tangent was proposed to recreate the elevated muscle resistance at different Unified Parkinson’s Disease Rating Scale (UPDRS) 0-3. Performance of the simulator was evaluated through benchtop tests and rigidity simulation tests. Preliminary results suggested the simulator had good torque control accuracy (an average RMSE < 0.27 Nm) and good fidelity in mimicking clinically-measured lead-pipe rigidity at UPDRS 0-3.\",\"PeriodicalId\":108312,\"journal\":{\"name\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Robotics and Automation (ICRA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRA48506.2021.9560891\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA48506.2021.9560891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a Series Elastic Elbow Neurological Exam Training Simulator for Lead-pipe Rigidity*
This paper describes the development of a 1-DOF kinesthetic force display device in the form of an arm training simulator that replicates the haptic feeling of lead-pipe rigidity in the elbow joint. Patients with lead-pipe rigidity have uniformly elevated muscle tone throughout the range of motion, which is an important clinical sign for diagnosing Parkinson’s disease during a neurological examination. The simulator could provide training opportunities for healthcare trainees to learn and practice the assessment technique for lead-pipe rigidity. The simulator was driven by a series elastic actuator in order to have more accurate joint torque control in a safe and cost-effective manner for rendering abnormal muscle resistance. A mathematical model of lead-pipe rigidity based on hyperbolic tangent was proposed to recreate the elevated muscle resistance at different Unified Parkinson’s Disease Rating Scale (UPDRS) 0-3. Performance of the simulator was evaluated through benchtop tests and rigidity simulation tests. Preliminary results suggested the simulator had good torque control accuracy (an average RMSE < 0.27 Nm) and good fidelity in mimicking clinically-measured lead-pipe rigidity at UPDRS 0-3.