基于Tansig的MLP网络心脏异常

F. Hashim, Syahrull Hi-Fi Syam Ahmad Jamil, J. Kadir, Nor Sham Hasan, B. Mustapha, Yulni Januar
{"title":"基于Tansig的MLP网络心脏异常","authors":"F. Hashim, Syahrull Hi-Fi Syam Ahmad Jamil, J. Kadir, Nor Sham Hasan, B. Mustapha, Yulni Januar","doi":"10.1109/ICCSCE47578.2019.9068588","DOIUrl":null,"url":null,"abstract":"Cardiac disorder can happen to everybody, irrespective of sex, age or race. Family members' history, however, gives a strong indication of the probable risk of middle heart failure. Cardiac anomaly hardly shows early signs, resulting in patient's sudden death. Heartbeat is generally an irregular electrical boost or activity of the heart. In this research, the Multilayer Perceptron (MLP) network is used as an early monitoring system to detect cardiac abnormality. The database of the MIT-BIH is used to extract the cardiac abnormality dataset, which was then used to train the chosen MLP network with multiple training algorithms by using Tansig as the activation function for the MLP network. The research shows the best result given by MLP network using BR training algorithm with 0.0012 on mean square error (MSE) and 0.9955 on regression performance outperform others techniques.","PeriodicalId":221890,"journal":{"name":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"1988 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Tansig Based MLP Network Cardiac Abnormality\",\"authors\":\"F. Hashim, Syahrull Hi-Fi Syam Ahmad Jamil, J. Kadir, Nor Sham Hasan, B. Mustapha, Yulni Januar\",\"doi\":\"10.1109/ICCSCE47578.2019.9068588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiac disorder can happen to everybody, irrespective of sex, age or race. Family members' history, however, gives a strong indication of the probable risk of middle heart failure. Cardiac anomaly hardly shows early signs, resulting in patient's sudden death. Heartbeat is generally an irregular electrical boost or activity of the heart. In this research, the Multilayer Perceptron (MLP) network is used as an early monitoring system to detect cardiac abnormality. The database of the MIT-BIH is used to extract the cardiac abnormality dataset, which was then used to train the chosen MLP network with multiple training algorithms by using Tansig as the activation function for the MLP network. The research shows the best result given by MLP network using BR training algorithm with 0.0012 on mean square error (MSE) and 0.9955 on regression performance outperform others techniques.\",\"PeriodicalId\":221890,\"journal\":{\"name\":\"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"volume\":\"1988 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSCE47578.2019.9068588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE47578.2019.9068588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

心脏疾病可能发生在每个人身上,不分性别、年龄或种族。然而,家族成员的历史给出了可能的中期心力衰竭风险的强烈指示。心脏异常几乎没有早期迹象,导致患者猝死。心跳通常是一种不规则的电刺激或心脏活动。在本研究中,多层感知器(MLP)网络作为早期监测系统来检测心脏异常。使用MIT-BIH的数据库提取心脏异常数据集,然后使用Tansig作为MLP网络的激活函数,使用多种训练算法对所选的MLP网络进行训练。研究表明,使用BR训练算法的MLP网络的均方误差(MSE)为0.0012,回归性能为0.9955,优于其他技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tansig Based MLP Network Cardiac Abnormality
Cardiac disorder can happen to everybody, irrespective of sex, age or race. Family members' history, however, gives a strong indication of the probable risk of middle heart failure. Cardiac anomaly hardly shows early signs, resulting in patient's sudden death. Heartbeat is generally an irregular electrical boost or activity of the heart. In this research, the Multilayer Perceptron (MLP) network is used as an early monitoring system to detect cardiac abnormality. The database of the MIT-BIH is used to extract the cardiac abnormality dataset, which was then used to train the chosen MLP network with multiple training algorithms by using Tansig as the activation function for the MLP network. The research shows the best result given by MLP network using BR training algorithm with 0.0012 on mean square error (MSE) and 0.9955 on regression performance outperform others techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信