注意要求任务诱发脑电检测的特征选择

V. Raj, Jupitara Hazarika, Ranjay Hazra
{"title":"注意要求任务诱发脑电检测的特征选择","authors":"V. Raj, Jupitara Hazarika, Ranjay Hazra","doi":"10.1109/ASPCON49795.2020.9276710","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) is a popular noninvasive method used to record and analyse the electrical activity of the brain. Despite the poor spatial resolution, this tool provides a very high temporal resolution. With the use of a large number of channels, it is necessary to select the relevant features in EEG analysis. Hence, this research paper aims to identify the features that are capable of differentiating an attention-demanding task- induced brain activity from the resting state condition. Eleven different features including mean, root mean square, band power, skewness, mode, data range, interquartile range (IQR) and three Hjorth parameters are extracted from alpha, beta and gamma frequency bands of EEG. Each feature is tested using the statistical tool called paired t-test. Results demonstrate the importance of feature selection step for the recognition process. Hjorth parameters have shown significant statistical difference (p<0.05) between the datasets of attention task and resting-state and thus, can be a biomarker in this particular case.","PeriodicalId":193814,"journal":{"name":"2020 IEEE Applied Signal Processing Conference (ASPCON)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature selection for attention demanding task induced EEG detection\",\"authors\":\"V. Raj, Jupitara Hazarika, Ranjay Hazra\",\"doi\":\"10.1109/ASPCON49795.2020.9276710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electroencephalography (EEG) is a popular noninvasive method used to record and analyse the electrical activity of the brain. Despite the poor spatial resolution, this tool provides a very high temporal resolution. With the use of a large number of channels, it is necessary to select the relevant features in EEG analysis. Hence, this research paper aims to identify the features that are capable of differentiating an attention-demanding task- induced brain activity from the resting state condition. Eleven different features including mean, root mean square, band power, skewness, mode, data range, interquartile range (IQR) and three Hjorth parameters are extracted from alpha, beta and gamma frequency bands of EEG. Each feature is tested using the statistical tool called paired t-test. Results demonstrate the importance of feature selection step for the recognition process. Hjorth parameters have shown significant statistical difference (p<0.05) between the datasets of attention task and resting-state and thus, can be a biomarker in this particular case.\",\"PeriodicalId\":193814,\"journal\":{\"name\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Applied Signal Processing Conference (ASPCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPCON49795.2020.9276710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Applied Signal Processing Conference (ASPCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPCON49795.2020.9276710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑电图(EEG)是一种流行的无创方法,用于记录和分析大脑的电活动。尽管空间分辨率很差,但该工具提供了非常高的时间分辨率。由于使用了大量的通道,因此在EEG分析中有必要选择相关的特征。因此,本研究旨在确定能够区分注意力要求任务诱导的大脑活动与静息状态的特征。从EEG的alpha、beta和gamma频段中提取了均值、均方根、频带功率、偏度、模态、数据范围、四分位间距(IQR)和三个Hjorth参数等11个不同的特征。每个特征都使用配对t检验的统计工具进行测试。结果证明了特征选择步骤在识别过程中的重要性。Hjorth参数在注意任务和静息状态数据集之间显示出显著的统计学差异(p<0.05),因此可以作为该特殊情况下的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feature selection for attention demanding task induced EEG detection
Electroencephalography (EEG) is a popular noninvasive method used to record and analyse the electrical activity of the brain. Despite the poor spatial resolution, this tool provides a very high temporal resolution. With the use of a large number of channels, it is necessary to select the relevant features in EEG analysis. Hence, this research paper aims to identify the features that are capable of differentiating an attention-demanding task- induced brain activity from the resting state condition. Eleven different features including mean, root mean square, band power, skewness, mode, data range, interquartile range (IQR) and three Hjorth parameters are extracted from alpha, beta and gamma frequency bands of EEG. Each feature is tested using the statistical tool called paired t-test. Results demonstrate the importance of feature selection step for the recognition process. Hjorth parameters have shown significant statistical difference (p<0.05) between the datasets of attention task and resting-state and thus, can be a biomarker in this particular case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信