基于神经网络的表观煅烧度软测量

Zhugang Yuan, Hui Liu
{"title":"基于神经网络的表观煅烧度软测量","authors":"Zhugang Yuan, Hui Liu","doi":"10.1109/ICMA.2010.5589032","DOIUrl":null,"url":null,"abstract":"Soft sensor technique is used to solve the problem of measuring the on-line apparent degree of calcination in New Suspension Preheater Dry Process (NSP) Kiln based on BP neural network in this paper. According to the actual working conditions of the calcinations, a soft sensor model with six Dimensional input vector and one Dimensional output vector is established by using Back-Propagation (BP) neural network. The Reliability and prediction accuracy of the model are verified and compared based on actual data. The results of the experiment show that the prediction accuracy of this soft sensor model can reach 96%. So the on-line measurement of the apparent degree of calcination in NSP Kiln can be realized by this soft sensor model.","PeriodicalId":145608,"journal":{"name":"2010 IEEE International Conference on Mechatronics and Automation","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Soft sensor for apparent degree of calcination based on ANN\",\"authors\":\"Zhugang Yuan, Hui Liu\",\"doi\":\"10.1109/ICMA.2010.5589032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Soft sensor technique is used to solve the problem of measuring the on-line apparent degree of calcination in New Suspension Preheater Dry Process (NSP) Kiln based on BP neural network in this paper. According to the actual working conditions of the calcinations, a soft sensor model with six Dimensional input vector and one Dimensional output vector is established by using Back-Propagation (BP) neural network. The Reliability and prediction accuracy of the model are verified and compared based on actual data. The results of the experiment show that the prediction accuracy of this soft sensor model can reach 96%. So the on-line measurement of the apparent degree of calcination in NSP Kiln can be realized by this soft sensor model.\",\"PeriodicalId\":145608,\"journal\":{\"name\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2010.5589032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2010.5589032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用软测量技术,基于BP神经网络,解决了新型悬浮预热器干法窑煅烧表观程度的在线测量问题。根据煅烧过程的实际工况,利用BP神经网络建立了具有六维输入向量和一维输出向量的软测量模型。结合实际数据,对模型的可靠性和预测精度进行了验证和比较。实验结果表明,该软测量模型的预测精度可达96%。因此,利用该软测量模型可以实现对NSP窑表观煅烧度的在线测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soft sensor for apparent degree of calcination based on ANN
Soft sensor technique is used to solve the problem of measuring the on-line apparent degree of calcination in New Suspension Preheater Dry Process (NSP) Kiln based on BP neural network in this paper. According to the actual working conditions of the calcinations, a soft sensor model with six Dimensional input vector and one Dimensional output vector is established by using Back-Propagation (BP) neural network. The Reliability and prediction accuracy of the model are verified and compared based on actual data. The results of the experiment show that the prediction accuracy of this soft sensor model can reach 96%. So the on-line measurement of the apparent degree of calcination in NSP Kiln can be realized by this soft sensor model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信