模拟不同土壤中的有机质动态。

E. Verberne, J. Hassink, P. Willigen, J. Groot, J. V. Veen
{"title":"模拟不同土壤中的有机质动态。","authors":"E. Verberne, J. Hassink, P. Willigen, J. Groot, J. V. Veen","doi":"10.18174/njas.v38i3a.16585","DOIUrl":null,"url":null,"abstract":"A mathematical model was developed to describe carbon (C) and nitrogen (N) cycling in different soil types, e.g. clay and sandy soils. Transformation rates were described by first-order kinetics. Soil organic matter is divided into four fractions (including microbial biomass pool) and three fractions of residues. The fraction of active soil organic matter was assumed to be affected by the extent of physical protection within the soil, as was the soil microbial biomass. The extent of protection influenced the steady state level of the model, and, hence, the mineralization rates. The mineralization rate in fine-textured soils is lower than in coarse-textured soils; in fine-textured soils a larger proportion of the soil organic matter may be physically protected. The availability of organic materials as a substrate for microorganisms is not only determined by their chemical composition, but also by their spatial distribution in the soil. (Abstract retrieved from CAB Abstracts by CABI’s permission)","PeriodicalId":324908,"journal":{"name":"Netherlands Journal of Agricultural Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"249","resultStr":"{\"title\":\"Modelling organic matter dynamics in different soils.\",\"authors\":\"E. Verberne, J. Hassink, P. Willigen, J. Groot, J. V. Veen\",\"doi\":\"10.18174/njas.v38i3a.16585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model was developed to describe carbon (C) and nitrogen (N) cycling in different soil types, e.g. clay and sandy soils. Transformation rates were described by first-order kinetics. Soil organic matter is divided into four fractions (including microbial biomass pool) and three fractions of residues. The fraction of active soil organic matter was assumed to be affected by the extent of physical protection within the soil, as was the soil microbial biomass. The extent of protection influenced the steady state level of the model, and, hence, the mineralization rates. The mineralization rate in fine-textured soils is lower than in coarse-textured soils; in fine-textured soils a larger proportion of the soil organic matter may be physically protected. The availability of organic materials as a substrate for microorganisms is not only determined by their chemical composition, but also by their spatial distribution in the soil. (Abstract retrieved from CAB Abstracts by CABI’s permission)\",\"PeriodicalId\":324908,\"journal\":{\"name\":\"Netherlands Journal of Agricultural Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"249\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Netherlands Journal of Agricultural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18174/njas.v38i3a.16585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Netherlands Journal of Agricultural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18174/njas.v38i3a.16585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 249

摘要

建立了一个数学模型来描述碳(C)和氮(N)在不同土壤类型(如粘土和沙质土壤)中的循环。转化速率由一级动力学描述。土壤有机质分为四组分(含微生物生物量库)和三组分残渣。活性土壤有机质的比例被认为受到土壤内物理保护程度的影响,土壤微生物生物量也是如此。保护的程度影响了模型的稳态水平,因此也影响了矿化率。细粒土的矿化率低于粗粒土;在质地较细的土壤中,较大比例的土壤有机质可能受到物理保护。有机物质作为微生物底物的有效性不仅取决于其化学成分,还取决于其在土壤中的空间分布。(经CABI许可摘自CAB Abstracts)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling organic matter dynamics in different soils.
A mathematical model was developed to describe carbon (C) and nitrogen (N) cycling in different soil types, e.g. clay and sandy soils. Transformation rates were described by first-order kinetics. Soil organic matter is divided into four fractions (including microbial biomass pool) and three fractions of residues. The fraction of active soil organic matter was assumed to be affected by the extent of physical protection within the soil, as was the soil microbial biomass. The extent of protection influenced the steady state level of the model, and, hence, the mineralization rates. The mineralization rate in fine-textured soils is lower than in coarse-textured soils; in fine-textured soils a larger proportion of the soil organic matter may be physically protected. The availability of organic materials as a substrate for microorganisms is not only determined by their chemical composition, but also by their spatial distribution in the soil. (Abstract retrieved from CAB Abstracts by CABI’s permission)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信