直驱机器人的标定分析

C. Kozakiewicz, T. Ogiso, N. Miyake
{"title":"直驱机器人的标定分析","authors":"C. Kozakiewicz, T. Ogiso, N. Miyake","doi":"10.1109/IROS.1990.262389","DOIUrl":null,"url":null,"abstract":"A software-based calibration method is developed to decrease the positioning errors of a SCARA assembly robot caused by static deflection of the robot arm under force and moment load. A robot stiffness model is constructed and used to calculate differential joint angle corrections which are then applied to the inverse kinematic solution of the ideal robot model to compensate for the static deflection errors. Least squares polynomial approximation and a neural network are used for storing the joint correction values and for interpolation. A computer simulation of the calibration method demonstrated a decrease in the average positioning error from 0.43 mm to 0.03 mm and in the range of error from +or-0.35 mm to +or-0.10 mm in the calibrated area.<<ETX>>","PeriodicalId":409624,"journal":{"name":"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Calibration analysis of a direct drive robot\",\"authors\":\"C. Kozakiewicz, T. Ogiso, N. Miyake\",\"doi\":\"10.1109/IROS.1990.262389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A software-based calibration method is developed to decrease the positioning errors of a SCARA assembly robot caused by static deflection of the robot arm under force and moment load. A robot stiffness model is constructed and used to calculate differential joint angle corrections which are then applied to the inverse kinematic solution of the ideal robot model to compensate for the static deflection errors. Least squares polynomial approximation and a neural network are used for storing the joint correction values and for interpolation. A computer simulation of the calibration method demonstrated a decrease in the average positioning error from 0.43 mm to 0.03 mm and in the range of error from +or-0.35 mm to +or-0.10 mm in the calibrated area.<<ETX>>\",\"PeriodicalId\":409624,\"journal\":{\"name\":\"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1990.262389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1990.262389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种基于软件的SCARA装配机器人定位标定方法,以减小机械臂在力载荷和力矩载荷作用下的静挠度所引起的定位误差。建立了机器人刚度模型,利用该模型计算关节角的微分修正,并将其应用于理想机器人模型的运动学逆解中,以补偿静态挠度误差。最小二乘多项式近似和神经网络用于存储关节校正值和插值。校准方法的计算机模拟表明,校准区域的平均定位误差从0.43 mm减少到0.03 mm,误差范围从+或0.35 mm到+或0.10 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration analysis of a direct drive robot
A software-based calibration method is developed to decrease the positioning errors of a SCARA assembly robot caused by static deflection of the robot arm under force and moment load. A robot stiffness model is constructed and used to calculate differential joint angle corrections which are then applied to the inverse kinematic solution of the ideal robot model to compensate for the static deflection errors. Least squares polynomial approximation and a neural network are used for storing the joint correction values and for interpolation. A computer simulation of the calibration method demonstrated a decrease in the average positioning error from 0.43 mm to 0.03 mm and in the range of error from +or-0.35 mm to +or-0.10 mm in the calibrated area.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信