Bin Yu, Xiaoling Song, Feng Guan, Zhiming Yang, Baozhen Yao
{"title":"短期交通状况多时间步预测的k近邻模型","authors":"Bin Yu, Xiaoling Song, Feng Guan, Zhiming Yang, Baozhen Yao","doi":"10.1061/(ASCE)TE.1943-5436.0000816","DOIUrl":null,"url":null,"abstract":"AbstractOne of the most critical functions of an intelligent transportation system (ITS) is to provide accurate and real-time prediction of traffic condition. This paper develops a short-term traffic condition prediction model based on the k-nearest neighbor algorithm. In the prediction model, the time-varying and continuous characteristic of traffic flow is considered, and the multi-time-step prediction model is proposed based on the single-time-step model. To test the accuracy of the proposed multi-time-step prediction model, GPS data of taxis in Foshan city, China, are used. The results show that the multi-time-step prediction model with spatial-temporal parameters provides a good performance compared with the support vector machine (SVM) model, artificial neural network (ANN) model, real-time-data model, and history-data model. The results also appear to indicate that the proposed k-nearest neighbor model is an effective approach in predicting the short-term traffic condition.","PeriodicalId":305908,"journal":{"name":"Journal of Transportation Engineering-asce","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"190","resultStr":"{\"title\":\"k-Nearest Neighbor Model for Multiple-Time-Step Prediction of Short-Term Traffic Condition\",\"authors\":\"Bin Yu, Xiaoling Song, Feng Guan, Zhiming Yang, Baozhen Yao\",\"doi\":\"10.1061/(ASCE)TE.1943-5436.0000816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractOne of the most critical functions of an intelligent transportation system (ITS) is to provide accurate and real-time prediction of traffic condition. This paper develops a short-term traffic condition prediction model based on the k-nearest neighbor algorithm. In the prediction model, the time-varying and continuous characteristic of traffic flow is considered, and the multi-time-step prediction model is proposed based on the single-time-step model. To test the accuracy of the proposed multi-time-step prediction model, GPS data of taxis in Foshan city, China, are used. The results show that the multi-time-step prediction model with spatial-temporal parameters provides a good performance compared with the support vector machine (SVM) model, artificial neural network (ANN) model, real-time-data model, and history-data model. The results also appear to indicate that the proposed k-nearest neighbor model is an effective approach in predicting the short-term traffic condition.\",\"PeriodicalId\":305908,\"journal\":{\"name\":\"Journal of Transportation Engineering-asce\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"190\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Transportation Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Transportation Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)TE.1943-5436.0000816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
k-Nearest Neighbor Model for Multiple-Time-Step Prediction of Short-Term Traffic Condition
AbstractOne of the most critical functions of an intelligent transportation system (ITS) is to provide accurate and real-time prediction of traffic condition. This paper develops a short-term traffic condition prediction model based on the k-nearest neighbor algorithm. In the prediction model, the time-varying and continuous characteristic of traffic flow is considered, and the multi-time-step prediction model is proposed based on the single-time-step model. To test the accuracy of the proposed multi-time-step prediction model, GPS data of taxis in Foshan city, China, are used. The results show that the multi-time-step prediction model with spatial-temporal parameters provides a good performance compared with the support vector machine (SVM) model, artificial neural network (ANN) model, real-time-data model, and history-data model. The results also appear to indicate that the proposed k-nearest neighbor model is an effective approach in predicting the short-term traffic condition.