基于人工神经网络的孤岛微电网故障检测初步研究

Itani Phafula, Ellen De Mello Koch, K. Nixon
{"title":"基于人工神经网络的孤岛微电网故障检测初步研究","authors":"Itani Phafula, Ellen De Mello Koch, K. Nixon","doi":"10.1109/SAUPEC/RobMech/PRASA48453.2020.9041063","DOIUrl":null,"url":null,"abstract":"The adoption of electrical microgrids is growing. This form of grid can be connected to the main grid or can operate in an islanded mode. This study looks at the challenges faced when considering fault detection and location where microgrids are involved. Different Artificial Intelligence network protection solutions are explored and discussed. A three-phase islanded microgrid is modelled using MATLAB with symmetrical and asymmetrical faults introduced at different load values. Voltage magnitude and phase angles are recorded and used as training data for an Artificial Neural Network (ANN) tool to detect and classify faults on the islanded microgrid. The ANN tool is able to detect, classify and locate faults with good accuracy.","PeriodicalId":215514,"journal":{"name":"2020 International SAUPEC/RobMech/PRASA Conference","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Preliminary Study of Fault Detection on an Islanded Microgrid Using Artificial Neural Networks\",\"authors\":\"Itani Phafula, Ellen De Mello Koch, K. Nixon\",\"doi\":\"10.1109/SAUPEC/RobMech/PRASA48453.2020.9041063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption of electrical microgrids is growing. This form of grid can be connected to the main grid or can operate in an islanded mode. This study looks at the challenges faced when considering fault detection and location where microgrids are involved. Different Artificial Intelligence network protection solutions are explored and discussed. A three-phase islanded microgrid is modelled using MATLAB with symmetrical and asymmetrical faults introduced at different load values. Voltage magnitude and phase angles are recorded and used as training data for an Artificial Neural Network (ANN) tool to detect and classify faults on the islanded microgrid. The ANN tool is able to detect, classify and locate faults with good accuracy.\",\"PeriodicalId\":215514,\"journal\":{\"name\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International SAUPEC/RobMech/PRASA Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SAUPEC/RobMech/PRASA Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAUPEC/RobMech/PRASA48453.2020.9041063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

微电网的采用正在增长。这种形式的电网可以连接到主电网,也可以在孤岛模式下运行。本研究着眼于在考虑涉及微电网的故障检测和定位时面临的挑战。探讨了不同的人工智能网络防护方案。利用MATLAB对三相孤岛微电网进行建模,在不同负荷下分别引入对称故障和不对称故障。记录电压幅值和相位角,并将其作为人工神经网络(ANN)工具的训练数据,用于孤岛微电网的故障检测和分类。该人工神经网络工具能够很好地检测、分类和定位故障。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary Study of Fault Detection on an Islanded Microgrid Using Artificial Neural Networks
The adoption of electrical microgrids is growing. This form of grid can be connected to the main grid or can operate in an islanded mode. This study looks at the challenges faced when considering fault detection and location where microgrids are involved. Different Artificial Intelligence network protection solutions are explored and discussed. A three-phase islanded microgrid is modelled using MATLAB with symmetrical and asymmetrical faults introduced at different load values. Voltage magnitude and phase angles are recorded and used as training data for an Artificial Neural Network (ANN) tool to detect and classify faults on the islanded microgrid. The ANN tool is able to detect, classify and locate faults with good accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信