基于维基百科数据提取的自动问答

Xiangzhou Huang, Baogang Wei, Yin Zhang
{"title":"基于维基百科数据提取的自动问答","authors":"Xiangzhou Huang, Baogang Wei, Yin Zhang","doi":"10.1109/ISKE.2015.78","DOIUrl":null,"url":null,"abstract":"The question-answering (QA) system plays a vital role in artificial intelligence. The goal of automatic QA is to find out correct answers to the natural language questions raised by users from some specified datasets. Data on the Web is about everything and contains almost all the answers we needed. Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia which contains more than 30 million articles and can be considered to be a huge dataset for us to extract answers from. In this paper, we propose a method to integrate Wikipedia data extraction with automated question answering, which allows us to extract answers to questions from Wikipedia pages in real time. Experimental results show that the QA system based on our proposed method achieves good precision while answering questions.","PeriodicalId":312629,"journal":{"name":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic Question-Answering Based on Wikipedia Data Extraction\",\"authors\":\"Xiangzhou Huang, Baogang Wei, Yin Zhang\",\"doi\":\"10.1109/ISKE.2015.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The question-answering (QA) system plays a vital role in artificial intelligence. The goal of automatic QA is to find out correct answers to the natural language questions raised by users from some specified datasets. Data on the Web is about everything and contains almost all the answers we needed. Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia which contains more than 30 million articles and can be considered to be a huge dataset for us to extract answers from. In this paper, we propose a method to integrate Wikipedia data extraction with automated question answering, which allows us to extract answers to questions from Wikipedia pages in real time. Experimental results show that the QA system based on our proposed method achieves good precision while answering questions.\",\"PeriodicalId\":312629,\"journal\":{\"name\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2015.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2015.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

问答系统在人工智能中起着至关重要的作用。自动QA的目标是从一些指定的数据集中找出用户提出的自然语言问题的正确答案。网络上的数据是关于一切的,几乎包含了我们需要的所有答案。维基百科是一个协作编辑,多语言,免费的互联网百科全书,包含超过3000万篇文章,可以被认为是一个巨大的数据集,供我们从中提取答案。在本文中,我们提出了一种将维基百科数据提取与自动问答相结合的方法,使我们能够实时地从维基百科页面中提取问题的答案。实验结果表明,基于该方法的问答系统在回答问题时取得了较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Question-Answering Based on Wikipedia Data Extraction
The question-answering (QA) system plays a vital role in artificial intelligence. The goal of automatic QA is to find out correct answers to the natural language questions raised by users from some specified datasets. Data on the Web is about everything and contains almost all the answers we needed. Wikipedia is a collaboratively edited, multilingual, free Internet encyclopedia which contains more than 30 million articles and can be considered to be a huge dataset for us to extract answers from. In this paper, we propose a method to integrate Wikipedia data extraction with automated question answering, which allows us to extract answers to questions from Wikipedia pages in real time. Experimental results show that the QA system based on our proposed method achieves good precision while answering questions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信