{"title":"使用扩频调制的便携式高端体内红外光谱仪器","authors":"M. Giardini, S. Trevisan","doi":"10.1109/IMTC.2004.1351197","DOIUrl":null,"url":null,"abstract":"Near infrared spectroscopy (NIRS) can be employed to monitor noninvasively and continuously local changes in hemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring during unattended physical activity. A portable NIRS research-grade acquisition system, dedicated to low-noise measurements during muscular exercise, is presented. A spread-spectrum multiplexing scheme significantly enhances system performance. The resulting instrument is compact, lightweight and efficient. Preliminary tests on oxygen consumption during exercise and venous occlusion show excellent detectivity and time response.","PeriodicalId":386903,"journal":{"name":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Portable high-end instrument for in-vivo infrared spectroscopy using spread spectrum modulation\",\"authors\":\"M. Giardini, S. Trevisan\",\"doi\":\"10.1109/IMTC.2004.1351197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near infrared spectroscopy (NIRS) can be employed to monitor noninvasively and continuously local changes in hemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring during unattended physical activity. A portable NIRS research-grade acquisition system, dedicated to low-noise measurements during muscular exercise, is presented. A spread-spectrum multiplexing scheme significantly enhances system performance. The resulting instrument is compact, lightweight and efficient. Preliminary tests on oxygen consumption during exercise and venous occlusion show excellent detectivity and time response.\",\"PeriodicalId\":386903,\"journal\":{\"name\":\"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMTC.2004.1351197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMTC.2004.1351197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Portable high-end instrument for in-vivo infrared spectroscopy using spread spectrum modulation
Near infrared spectroscopy (NIRS) can be employed to monitor noninvasively and continuously local changes in hemodynamics and oxygenation of human tissues. In particular, the technique can be particularly useful for muscular functional monitoring during unattended physical activity. A portable NIRS research-grade acquisition system, dedicated to low-noise measurements during muscular exercise, is presented. A spread-spectrum multiplexing scheme significantly enhances system performance. The resulting instrument is compact, lightweight and efficient. Preliminary tests on oxygen consumption during exercise and venous occlusion show excellent detectivity and time response.