一种利用灰色关联度检测偏好的脑电图分析方法

S. Ito, Momoyo Ito, M. Fukumi
{"title":"一种利用灰色关联度检测偏好的脑电图分析方法","authors":"S. Ito, Momoyo Ito, M. Fukumi","doi":"10.23919/ELINFOCOM.2018.8330622","DOIUrl":null,"url":null,"abstract":"This paper introduces an electroencephalogram (EEG) analysis method to detect human preference. The proposed method consists of three phases; EEG recording, EEG feature extraction and preference detection. In EEG recording, we employ the simple electroencephalograph. The measurement position to record the EEG is left frontal lobe (FP1). The gray association degree is used to extract the EEG feature. The support vector machine is used to detect human preference on sounds listened to. In order to show the effectiveness of the proposed method, we conduct the experiments. In the experimental results, the mean of the accuracy rate of the favorite sound detection was higher than 88%.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An electroencephalogram analysis method to detect preference using gray association degree\",\"authors\":\"S. Ito, Momoyo Ito, M. Fukumi\",\"doi\":\"10.23919/ELINFOCOM.2018.8330622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces an electroencephalogram (EEG) analysis method to detect human preference. The proposed method consists of three phases; EEG recording, EEG feature extraction and preference detection. In EEG recording, we employ the simple electroencephalograph. The measurement position to record the EEG is left frontal lobe (FP1). The gray association degree is used to extract the EEG feature. The support vector machine is used to detect human preference on sounds listened to. In order to show the effectiveness of the proposed method, we conduct the experiments. In the experimental results, the mean of the accuracy rate of the favorite sound detection was higher than 88%.\",\"PeriodicalId\":413646,\"journal\":{\"name\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELINFOCOM.2018.8330622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种检测人类偏好的脑电图分析方法。该方法分为三个阶段;脑电记录,脑电特征提取和偏好检测。在脑电图记录中,我们采用简易脑电图仪。记录EEG的测量位置为左额叶(FP1)。利用灰度关联度提取脑电特征。支持向量机用于检测人们对所听声音的偏好。为了证明该方法的有效性,我们进行了实验。在实验结果中,最喜欢的声音检测准确率的平均值高于88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An electroencephalogram analysis method to detect preference using gray association degree
This paper introduces an electroencephalogram (EEG) analysis method to detect human preference. The proposed method consists of three phases; EEG recording, EEG feature extraction and preference detection. In EEG recording, we employ the simple electroencephalograph. The measurement position to record the EEG is left frontal lobe (FP1). The gray association degree is used to extract the EEG feature. The support vector machine is used to detect human preference on sounds listened to. In order to show the effectiveness of the proposed method, we conduct the experiments. In the experimental results, the mean of the accuracy rate of the favorite sound detection was higher than 88%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信